ISSN: 0719-8647

Art-70: Prediction of pH, organic carbon content and effective cation exchange capacity through optical characterization of agricultural soils by near infrared multispectral images

Ramírez-Rincón J.A., Palencia M, Enrique M. Combatt, (2021), Prediction of pH, organic carbon content and effective cation exchange capacity through optical characterization of agricultural soils by near infrared multispectral images, J. Sci. Technol. Appl., 11, 4-12. https://doi.org/10.34294/j.jsta.21.11.70

Google Scholar (0)

Cited ref.
1 - Abbas, F., Hammad, H. M., Ishaq, W., Farooque, A. A., Bakhat, H. F., Zia, Z., Fahad, S., Farhad, W., and Cerdà, A., (2020), A review of soil carbon dynamics resulting from agricultural practices., Journal of Environmental Management, 268. https://doi.org/10.1016/j.jenvman.2020.110319
2 - Andersson, S., Nilsson, S. I., and Saetre, P., (2000), Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH., Soil Biology and Biochemistry, 1-10. https://doi.org/10.1016/S0038-0717(99)00103-0
3 - Ben-Dor, E., and Banin, A., (1995), Near-Infrared Analysis as a Rapid Method to Simultaneously Evaluate Several Soil Properties., Soil Science Society of America Journal, 364-372. https://doi.org/10.2136/sssaj1995.03615995005900020014x
4 - Bogrekci, I., and Lee, W. S., (2005), Spectral measurement of common soil phosphates., Transactions of the ASAE, 2371-2378. https://doi.org/10.13031/2013.20076
5 - Bonifazi, G., and Serranti, S., (2008), Hyperspectral imaging applied to complex particulate solids systems (F. Berghmans, A. G. Mignani, A. Cutolo, P. P. Meyrueis, and T. P. Pearsall, 70030F. https://doi.org/10.1117/12.781641
6 - Buddenbaum, H., and Steffens, M., (2011), Short communication: Laboratory imaging spectroscopy of soil profiles., Journal of Spectral Imaging.. https://doi.org/10.1255/jsi.2011.a2
7 - Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J. W., and Brussaard, (2018), Soil quality – A critical review., Soil Biology and Biochemistry, 105-125. https://doi.org/10.1016/j.soilbio.2018.01.030
8 - Chang, C.-W., Laird, D. A., Mausbach, M. J., and Hurburgh, C. R., (2001), Near-Infrared Reflectance Spectroscopy-Principal Components Regression Analyses of Soil Properties., Soil Science Society of America Journal, 480-490. https://doi.org/10.2136/sssaj2001.652480x
9 - Curtin, D., Campbell, C. A., and Jalil, A., (1998), Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils., Soil Biology and Biochemistry, 57-64. https://doi.org/10.1016/S0038-0717(97)00094- 1
10 - Ferrando Jorge, N., Clark, J., Cárdenas, M. L., Geoghegan, H., and Shannon, V., (2021), Measuring Soil Colour to Estimate Soil Organic Carbon Using a Large-Scale Citizen Science-Based Approach., Sustainability, 11029. https://doi.org/10.3390/su131911029
11 - Gentili, R., Ambrosini, R., Montagnani, C., Caronni, S., and Citterio, S., (2018), Effect of soil ph on the growth, reproductive investment and pollen allergenicity of ambrosia artemisiifolia l., Frontiers in Plant Science, 9(September), 1-12. https://doi.org/10.3389/fpls.2018.01335
12 - Gmur, S., Vogt, D., Zabowski, D., and Moskal, L. M., (2012), Hyperspectral Analysis of Soil Nitrogen, Carbon, Carbonate, and Organic Matter Using Regression Trees., Sensors, 10639-1065. https://doi.org/10.3390/s120810639
13 - Gomez, C., Lagacherie, P., and Coulouma, G., (2012), Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis–NIR data., Geoderma, 176-185. https://doi.org/10.1016/j.geoderma.2012.05.023
14 - Gomez, C., Viscarra Rossel, R. A., and McBratney, A. B., (2008), Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study., Geoderma, 403-411. https://doi.org/10.1016/j.geoderma.2008.06.011
15 - Guo, L., Zhang, H., Shi, T., Chen, Y., Jiang, Q., and Linderman, M., (2019), Prediction of soil organic carbon stock by laboratory spectral data and airborne hyperspectral images., Geoderma, 32-41. https://doi.org/10.1016/j.geoderma.2018.09.003
16 - Haijun, Q., Xiu, J., Liu, Z., Irene Maxime, D., and Shaowen, L., (2017), Predicting sandy soil moisture content with hyperspectral imaging., International Journal of Agricultural and Biological Engineering, 175-183. https://doi.org/10.25165/j.ijabe.20171006.2614
17 - Hawranek, J. P., Wrzeszcz, W., Muszyński, A. S., and Pajdowska, M., (2002), Infrared dispersion of liquid triethylamine., Journal of Non-Crystalline Solids, 62-70. https://doi.org/10.1016/S0022-3093(02)01122-5
18 - ICONTEC., (2013), Norma tcnica colombiana 5403 (16) para la determinación de carbono orgánico..
19 - ICONTEC., (2016), Norma tcnica colombiana 5349 (9) para la determinación de bases cambiables: mtodo del acetato de amonio 1N, pH 7.0..
20 - ICONTEC., (2018), Norma tcnica colombiana 5264 (16) para la determinación de pH..
21 - Jia, S., Li, H., Wang, Y., Tong, R., and Li, Q., (2016), Recursive variable selection to update near-infrared spectroscopy model for the determination of soil nitrogen and organic carbon., Geoderma, 92-99. https://doi.org/10.1016/j.geoderma.2016.01.018
22 - Jung, A., Vohland, M., and Thiele-Bruhn, S., (2015), Use of A Portable Camera for Proximal Soil Sensing with Hyperspectral Image Data., Remote Sensing, 11434-11448. https://doi.org/10.3390/rs70911434
23 - Lal, R., (2008), Soils and sustainable agriculture. A review., Agronomy for Sustainable Development, 57-64. https://doi.org/10.1051/agro:2007025
24 - Manley, M., (2014), Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials., Chem., 8200-8214. https://doi.org/10.1039/C4CS00062E
25 - Moritsuka, N., Matsuoka, K., Katsura, K., Sano, S., and Yanai, J., (2014), Soil color analysis for statistically estimating total carbon, total nitrogen and active iron contents in Japanese agricultural soils., Soil Science and Plant Nutrition, 475-485. https://doi.org/10.1080/00380768.2014.906295
26 - Nawar, S., Buddenbaum, H., Hill, J., and Kozak, J., (2014), Modeling and Mapping of Soil Salinity with Reflectance Spectroscopy and Landsat Data Using Two Quantitative Methods (PLSR and MARS)., Remote Sensing, 10813-10834. https://doi.org/10.3390/rs61110813
27 - Neina, D., (2019), The Role of Soil pH in Plant Nutrition and Soil Remediation., . Applied and Environmental Soil Science, 1-9. https://doi.org/10.1155/2019/5794869
28 - O’Rourke, S. M., and Holden, N. M., (2012), Determination of Soil Organic Matter and Carbon Fractions in Forest Top Soils using Spectral Data Acquired from Visible-Near Infrared Hyperspectral Images., Soil Science Society of America Journal, 586-596. https://doi.org/10.2136/sssaj2011.0053
29 - Palacios-Orueta, A., and Ustin, S. L., (1998), Remote Sensing of Soil Properties in the Santa Monica Mountains I. Spectral Analysis., Remote Sensing of Environment, 170-183. https://doi.org/10.1016/S0034-4257(98)00024-8
30 - Panov, A., and Fripiat, J. J., (1998), An Infrared Spectroscopic Study of Acetone and Mesityl Oxide Adsorption on Acid Catalyst., Langmuir, 3788-3796. https://doi.org/10.1021/la971359c
31 - Ramírez-Rincón, J. A., Ares-Muzio, O., Macias, J. D., Estrella-Gutirrez, M. A., Lizama-Tzec, F. I., Oskam, G., and Alvarado-Gil, J. J., (2018), On the use of photothermal techniques for the characterization of solar-selective coatings., Applied Physics A, 252. https://doi.org/10.1007/s00339-018-1667-5
32 - Ramirez-Rincon, J. A., Castro-Chong, A. M., Forero-Sandoval, I. Y., Gomez-Heredia, C. L., Peralta-Dominguez, D., Fernandez-Olaya, M. G., Becerril-González, J. J., Oskam, G., and Alvarado-Gil, J., (2020), Determination of the nonradiative conversion efficiency of lead mixed-halide perovskites using optical and photothermal spectroscopy., Applied Optics, D201. https://doi.org/10.1364/AO.384726
33 - Ramírez-Rincón, J. A., Restrepo, D. F., and Palencia, M., (2021), The use of optical spectroscopy and hyperspectral images in the physicochemical; characterization of soils; A review., Journal of Science with Technological Applications, 154-172. https://doi.org/10.34294/j.jsta.21.10.69
34 - Schwanghart, W., and Jarmer, T., (2011), Linking spatial patterns of soil organic carbon to topography — A case study from south eastern Spain. Geomorphology, 252-263. https://doi.org/10.1016/j.geomorph.2010.11.008
35 - Shepherd, K. D., and Walsh, M. G., (2002), Development of Reflectance Spectral Libraries for Characterization of Soil Properties., Soil Science Society of America Journal, 3. https://doi.org/10.2136/sssaj2002.0988
36 - Stevens, A., van Wesemael, B., Bartholomeus, H., Rosillon, D., Tychon, B., and Ben-Dor, E., (2008), Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils., Geoderma, 395-404. https://doi.org/10.1016/j.geoderma.2007.12.009
37 - Stoner, E. R., and Baumgardner, M. F., (1981), Characteristic Variations in Reflectance of Surface Soils., Soil Science Society of America Journal, 1161-1165. https://doi.org/10.2136/sssaj1981.03615995004500060031x
38 - Tahmasbian, I., Xu, Z., Boyd, S., Zhou, J., Esmaeilani, R., Che, R., and Hosseini Bai, S., (2018), Laboratory-based hyperspectral image analysis for predicting soil carbon, nitrogen and their isotopic compositions., Geoderma, 254-263. https://doi.org/10.1016/j.geoderma.2018.06.008
39 - Vaudour, E., Gilliot, J. M., Bel, L., Lefevre, J., and Chehdi, K., (2016), Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra., International Journal of Applied Earth Observation and Geoinformation, 24-38. https://doi.org/10.1016/j.jag.2016.01.005
40 - Viscarra, R., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., and Skjemstad, J. O., (2006), Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties., Geoderma, 59-75. https://doi.org/10.1016/j.geoderma.2005.03.007
41 - Vodyanitskii, Y. N., and Savichev, A. T., (2017), The influence of organic matter on soil color using the regression equations of optical parameters in the system CIE- L*a*b*., Annals of Agrarian Science, 380-385. https://doi.org/10.1016/j.aasci.2017.05.023
42 - Xu, C., Zeng, W., Huang, J., Wu, J., and van Leeuwen, W., (2016), Prediction of Soil Moisture Content and Soil Salt Concentration from Hyperspectral Laboratory and Field Data., Remote Sensing, 42. https://doi.org/10.3390/rs8010042
43 - Zaki, M. I., Hasan, M. A., and Pasupulety, L., (2001), Surface Reactions of Acetone on Al 2 O 3 , TiO 2 , ZrO 2 , and CeO 2 : IR Spectroscopic Assessment of Impacts of the Surface Acid−Base Properties., Langmuir, 768-774. https://doi.org/10.1021/la000976p
44 - Zhang, T., Li, L., and Zheng, B., (2013), Estimation of agricultural soil properties with imaging and laboratory spectroscopy., Journal of Applied Remote Sensing, 073587. https://doi.org/10.1117/1.JRS.7.073587
Cited by.
bool(false)
Journal of Science with Technological Applications ( - 2025) CC BY-NC-SA 4.0 (Creative Commons Attribution License) Published by MT-PALLANTIA PUBLISHER S.A.S pallantia.publisher@jsta.cl Concepción - Chile