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Abstract. Currently, human beings face different problematics associated with environmental pollution, including the continuous 

degradation of the quality of water and, in this sense, its availability to be used for many purposes. Various factors are responsive for 

water pollution; however, anthropogenic activity (industries, agriculture, domestic processes, etc.) has the highest contribution. 

Specifically, anthropogenic activity has caused a vast pollution of almost all the water environments around the world by different types 

of chemical substances and materials, also called “emerging pollutants/contaminants”. Among these, those with an organic nature result 

to be of great interest due to their relatively high concentrations in waters, their structural and behavioral diversity, as well as, their 

potential risks to biota. To deal with this, different analytical techniques and removal methodologies to detect/monitor and eliminate 

emerging organic pollutants from water, respectively, have been well-studied and developed through time. Thus, due to the large quantity 

of works and advances carried out in this topic, it is important to take a look and review the different aspects involved in such techniques 
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and methodologies, which is the aim of this review. Here, an introduction to the concept of emerging organic pollutants is firstly done, 

including a bit of history about water pollution, the description of the most important classes of organic pollutants, their main sources 

and effects on biota. Then, sampling, sample pretreatment techniques (mainly liquid-liquid phase extraction and solid phase extraction), 

and the analytical determination of these compounds (e.g., employing gas chromatography, liquid chromatography, and mass 

spectrometry) are discussed and exemplified through relevant, most recent works. Finally, both conventional and non-conventional water 

treatment techniques, like adsorption processes, membrane-based separation systems, and advanced oxidation, are approached. 

Throughout the review, the discussion of different important aspects, such as advantages, disadvantages, and variants of every technique 

or methodology, are also included.  
 

Keywords: Water pollution, emerging pollutants, contaminants, removal techniques, analytical determination. 
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1. Introduction 
 

Liquid fresh water represents almost 0.8 % of all the water in the 

world, i.e., approximately 11 million km3, which results to be a 

relatively small quantity that needs to be cared for and preserved to 

a high extent. However, that task has not been apparently easy due 

to various factors, including population growth, urbanization, and 

industrial development, which have been contributed to the 

pollution of fresh water through time. Thus, the scarcity of fresh 

water because of its high pollution rate and overexploitation is one 

of the biggest environmental problems that humanity faces currently 

(Borrull et al., 2020; Schwarzenbach et al., 2010). In this sense, 

more than one thousand chemical organic substances have been 

identified in different water environments, which due to their 

concentrations, structural and behavioral diversity, harmful effects 

on human health and biota, and their persistence in the environment 

are of emerging concern to environmentalists and governmental 

agencies (Taylor et al., 2021; Yang et al., 2020). These substances 

have been also called “emerging organic pollutants” (EOPs) and 

they are the objective of this review. 

More specifically, EOPs comprise a high quantity of organic 

substances that have been persistently found in water (and other 

environments), which have a perceived or veridical threat to living 

beings, but with a lack of published health criteria, in almost all 

cases (Sauvé and Desroires, 2014). Different types of EOPs have 

been identified in water, among which there are pharmaceuticals, 

biocides, personal care compounds, industrial chemicals and 

additives, illicit drugs, biological toxins, and even nowadays 

nanomaterials (Chander et al., 2016; Chaturvedi and Dave, 2021; 

Davoli et al., 2019; Esposito et al., 2020; Joseph, 2017). These can 

reach water bodies through different sources, for example, 

agricultural practices, industry, daily household activities, etc., and 

processes like discharges, surface runoff, atmosphere precipitation, 

or subsurface infiltration (Ahamad et al., 2020; Parra-Saldivar et al., 

2020). In terms of their toxicity, EOPs can cause affectations in 

aquatic organisms by metabolism alterations, as well as, many 

harmful effects on humans, such as gastrointestinal, kidney, liver, 

nervous system, endocrine, and immune system disorders (Alharbi 

et al., 2018; Bhavya et al., 2021; Saaristo et al., 2018).  

In order to deal with this environmental problem, it has been 

necessary, first, utilizing proper analytical techniques to measure 

and monitor the levels of EOPs in water, such that it is possible to 

obtain relevant information about their occurrence, fate and 

environmental behavior. This is the base for further regulations and 

the establishment of proper solutions. To accomplish it, different 

analytical methodologies have been implemented, including gas 

chromatography, liquid chromatography, and mass spectrometry, as 

well as, Fourier transform infrared spectroscopy, Raman 

spectroscopy, UV-Vis spectroscopy, and fluorescence 

measurements (Quintelas et al., 2020; Warner et al., 2020; Yang et 

al., 2020). Among these, chromatographic techniques coupled with 

mass spectrometry as detector have had the best results to quantify 

EOPs in water and, thus, they have been widely accepted and 

implemented for this purpose. However, various aspects associated 

to the targeted EOPs have to be taken into account to a proper choice 

between those techniques, e.g., volatility, polarity, functional 

groups, thermal stability, etc. In addition, some sample pretreatment 

steps are carefully choice with the aim to achieve a correct 

determination of EOPs in complex matrixes (Alvares and Jones-

Lepp, 2010; Hartmann et al., 2020; Tang et al., 2019). 

On the other hand, various removal methodologies of EOPs from 

water have been developed and studied as a part of a complete water 

treatment process since the end of the last century. They can divide 

in conventional water treatments and non-conventional water 

treatment. For its part, conventional water treatment refers to the 

commonly used techniques for decontaminating wastewater, for 

example, filtration, coagulation/flocculation, sedimentation, and 

biological treatment, which are widely found in wastewater 

treatment plants (Golovko et al., 2021; Kerasi et al., 2021; Turan et 

al., 2021). In terms of removal efficiency, conventional treatments 

remain limited for EOPs removal, such that, high concentrations of 

these pollutants are usually found in the obtained effluents (Cristaldi 

et al., 2020; Di Marcantonio et al., 2020; Khasawneh and 

Palaniandy, 2021). For this, it has been necessary to implemented 

additional, non-conventional treatment techniques to achieve a 

higher removal efficiency. In this case, adsorption processes (e.g., 

silica adsorbents, polymeric adsorbents, clay adsorbents, nano-

adsorbents, etc.), membrane-based separation systems (e.g., 
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microfiltration, ultrafiltration, nanofiltration, reverse osmosis, 

among others), and advanced oxidation processes (e.g., UV 

irradiation, ultrasonics, TiO2 photocatalyst, H2O2, O3, etc.) are the 

most promising methodologies (Bouyarmane et al., 2021; Ding et 

al., 2020; Lopera et al., 2019; Sun et al., 2021; Tak and Vellanki, 

2019). Nowadays, this is an important topic in different research 

field, such as environmental sciences, chemistry, engineering, 

physics, etc., since various aspects remain as optimizable 

parameters and some drawbacks of the techniques need to be 

overcome for their full application. 

In this sense, this review seeks to provide a more accurate view 

about EOPs in terms of the most employed analytical techniques for 

their determination and monitoring, as well as, the most utilized and 

explored methodologies for their removal. Here, general aspects 

associated with EOPs, such as a bit of history about water pollution, 

established definitions, types, and reported harmful effects are 

firstly covered. After that, a deeper discussion about the 

implementation of chromatographic techniques and mass 

spectrometry in the determination of EOPs in water is provided. 

Other less implemented techniques, such as FTIR, UV-Vis, and 

fluorescence are also included. Finally, an approach to conventional 

and non-conventional water treatment techniques is carried out, 

exemplifying them with relevant and recent works published in 

literature. Aspects such as basic principles, advantages, 

disadvantages, and some characteristics to be explored of each 

technique or methodology are discussed throughout the review. 

 

2. A brief historical summary of water pollution by 
organic substances 
 

Although environmental pollution has been an evident fact since the 

establishment of human beings as a society, this problem has only 

recently been taken into account. In the case of water pollution, the 

research began in the early 19th century and it was due to the 

emergence of different deadly conditions and their spread through 

this medium (Vasilachi et al., 2021). An example of this is the 

increase of deaths by cholera in London in the nineteenth century 

due to the consumption of high-polluted water from the Thames 

River. In the same way, typhoid fever claimed many lives in the 

United States in the last century due to its spread by water, for which 

there was no appropriate treatment. For this, the development of 

water treatment methodologies, such as filtration and chlorination, 

was promoted and carried out (Okun, 1999).  

Initially, water treatment was focused mainly in the removal of 

bacterial pathogens through which those infections were produced. 

However, the chemical revolution that accompanied the 

technological advance of World War I and World War II led to the 

production of thousands of different synthetic organic substances, 

which began to contaminate water bodies. At first, these chemicals 

were produced for different purposes, including chemical weapons 

(e.g., bromine ethyl acetate, chlorine, diphosgene), pharmaceuticals 

(e.g., salicylic acid, oxytetracycline, phenazone), pesticides (e.g., 

chlorophenols, carbamates, naphthalene), among others (Larsson, 

2014; Ongley, 1996; Özkara et al., 2016); however, all of them had 

a particular and important characteristic: they were synthesized to 

be long lasting to achieve economy in their application. In this 

sense, the wide use of these chemical agents linked to 

industrialization and the increase of world population, their long 

permanence in the environment and their propagation through 

different media, including water, led not only to their contamination, 

but also to the direct affectation of different species, including 

human beings (Peplow, 2020; Vilches et al., 2016).  

It was no until the mid-20th century that the National Cancer 

Institute of the United States made a statement on this issue, 

mentioning the relationship between potential future cancer cases 

and the high consumption of water highly contaminated with 

chemical agents (Hueper, 1960). Later, the Environmental 

Protection Agency, or EPA, recognized the presence of many 

synthetic organic substances in different drinking water sources, 

particularly in the Mississippi River. At the same time, some 

epidemiological studies revealed higher rates of some forms of 

cancer in the population using the untreated Mississippi River water. 

Another manifestation of the impact of organic substances on the 

quality of water emerged from Europe at the end of 20th century, 

where it was determined various pharmaceutical compounds in 

drinking water from sources that had received human wastewaters. 

Curiously, the people who used this water presented a wide range 

of illnesses, from cardiac to mental (Shraim et al., 2017; Stan and 

Heberer, 1997). By that time, some widely used pesticides were 

detected in fish samples of a drinking water source in San Francisco, 

United States. What was important about this case not only was the 

detection of organic synthetic substances, but their presence in an 

important human food source such as fish. This was one of the first 

indications of the bioaccumulation of organic pollutants (Pico et al., 

2019; Rocha et al., 2018). In Latin America the studies about water 

pollution started shortly after, detecting initially different 

pharmaceutical compounds and their metabolites in natural waters 

in Rio de Janeiro, Brazil (Stumpf et al., 1999). In this sense, these 

facts were the basis of a series of laws and projects focused on the 

control and regulation of organic substances in water by different 

organizations, for example the World Health Organization and the 

European Community (Okun, 1999). Also, the development and 

establishment of new technologies for the treatment of polluted 

water prioritized, e.g., precipitation, sorption processes, membrane 

technology, oxidative processes, among others (Angelakis et al., 

2018; Seow et al., 2016; Vuorinen et al., 2007).  

Since then, thousands of organic substances have been detected in 

different water bodies around the world, which reach these through 

various anthropogenic sources of pollution, e.g., industrial 

wastewater, agricultural processes, domestic sewage, among others 

(Fan et al., 2019; Wang et al., 2020a). These compounds, in 

conjunction with inorganic pollutants, were called “emerging 

pollutants'' (EPs) or “contaminants of emerging concerns'' and some 

important examples are listed in Table 1. In this point, it is important 

to highlight that the capacity to determine EPs in water has been 

linked directly to the advance in analytical techniques through 

which this kind of study has been possible until now (e.g., gas 

chromatography, liquid chromatography, mass spectrometry, UV 

spectroscopy, among others). This has had a rapid increase since the 

end of the last century (Martín-Pozo et al., 2019).  
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Table 1. Main types of EOPs and their characteristics. 

 

Class Description Examples References 

Pharmaceuticals Different synthetic or natural substances employed 
for the treatment of diseases and health problems in 
humans and/or animals.  
The most used pharmaceuticals are analgesics, 
antihypertensives, and antibiotics. Humans and 
animals can excrete them and they can reach water 
bodies through domestic wastewater, water 
treatment plants, hospital discharge, and even 
agricultural wastes.  

Ibuprofen, diclofenac, carbamazepine, clofibrate, 
paracetamol, metformin, valproic acid, amoxicillin, 
acetylcysteine, mesalamine, iomeprol, allopurinol, tylosin, 
ivermectin, ciprofloxacin, metoprolol, fenofibric acid, among 
others. 

Ahamad et al., (2020) 
Chander et al. (2016) 
Kümmerer (2010) 
Küster and Adler (2014) 

Pesticides A group of high stable and toxic substances 
employed to treat any pest. This “-cide” compound 
class includes herbicides, insecticides, nematicides, 
fungicides, bactericide, among others. These can 
reach surface water and groundwater through 
agricultural waste, industrial waste, air transportation, 
and wastewater. 

Endosulfan, glyphosate, chlorpyrifos, atrazine, methyl 
parathion, heptachlor, carbofuran, pentachlorophenol, 
dichlorodiphenyltrichloroethane, 
dichlorodiphenyldichloroethylene, diflubenzuron, 
azoxystrobin, chlorothalonil, among others. 

Jatoi et al. (2021) 
Sarker et al. (2021) 
Smital et al. (2004) 

Illicit drugs A class of substances that are produced, formulated, 
distributed, acquired, and consumed in an illicit way 
and which are used for non-medical purposes. It also 
includes some legal drugs used for recreational 
purposes. 

Amphetamine, cocaine, morphine, benzoylecgonine, 
norcocaine; methamphetamine, heroin, cannabis, among 
others. 

Davoli et al. (2019) 
Fabregat-Safont et al. 
(2021) 
Gil et al. (2012) 
 
 

Personal care 
products 

Substances used directly on the human body. 
Generally, they modified in some way the 
appearance, odor, and feel of the body. These 
compounds can reach water bodies through 
recreational waters, air, domestic sewage, etc. 

Parabens, triclosan, methyltriclosan, triclocarban, N,N-
diethyl-m-toluamide, celestolide, galaxolide, toxalide, 
phantolide, cashmeran, traseolide, methoxycinnamates, 
benzophenone, among others. 

Montes-Grajales et al. 
(2017) 
Pemberthy et al. (2020) 
Yang et al. (2017a) 

Industrial 
chemicals and 
additives 

Chemical substances employed in different industrial 
processes or used as additives in various products: 
food, plastics, gasoline, emulsions, etc.  

Tributyltin, methyl tert-butyl ether, 1,2,3-benzotriazole, 
benzothiazol-2-sulfonic acid, bisphenol A, di-2-ethylhexyl 
phosphate, octylphenol, naphtalene, benzo[a]pirene, 
benzene, 2,6-di-tert-butylphenol, 2,4-dinitrophenol, 
pentachlorophenol, etc. 

Esposito et al. (2020) 
Kantiani et al. (2010) 
Salthammer (2020) 

Water disinfection 
by-products 

Chemical substances derived from the treatment of 
polluted water with disinfectant agents (Cl2, O3, 
NH2Cl, UV radiation). Mainly, the raw material for 
these by-products is organic matter: humic acids, 
fulvic acids, amino acids, lipids, carbohydrates, 
organic acids, etc. 

Chloroform, bromodichloromethane, pentachloropropene, 
trichloroacetic acid, dichloro-hydroxy-benzoic acid, 1,1,1-
trichloropropanone, chloroisobutanol, 2,2-
dichloroacetamide, trichloronitromethane, 
tetrachlorothiophene, etc. 

Li et al. (2022) 
Park et al. (2016) 
Yang et al. (2021a) 

Waterborne 
pathogens 

Microorganisms (bacteria, virus, protozoa, and 
helminths) that are propagated through water and 
can cause any disease in the human body. Some 
pollution sources are fecal matter, food, and other 
polluted products. 

Campylobacter spp., Escherichia coli, Legionella 
pneumophila, Salmonella enterica,  
Helicobacter pylori, rotavirus, sapoviruses, hepatitis A virus, 
adenovirus, Acanthamoeba spp., Cryptosporidium parvum, 
Toxoplasma gondii, Dracunculus medinensis, among 
others. 

Baig et al. (2021) 
Ramírez-Castillo et al. 
(2015) 
 

Biological toxins Different biological molecules synthesized by living 
organisms, e.g., bacteria, fungi, plants, and animals, 
with defensive functions. They can cause any 
disease in contact with some particular enzymes or 
cellular receptors of the human body. 

Aflatoxin, ochratoxin A, sterigmatocystin, rubratoxin, 
patulin, byssochlamine acid, microcystin, anatoxin, 
saxitoxin, prymnesin, palytoxin, vomitoxin, azaspiracids, 
okadaic acid, etc.  

Alves et al. (2019) 
Hudnell (2005) 
Joseph (2017) 
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Table 1. (Continuation)   

Nanomaterials Materials with nanometric dimensions that are highly 
used in many applications, e.g., cosmetics, textiles, 
drug delivery systems, composites, etc, due to their 
unique chemical, biological, and physical properties. 
They can reach water bodies through wastewater 
systems, including sewers, water treatment plants, 
and sludge-incineration plants. 

Fullerenes and derivatives, carbon nanotubes, quantum 
dots, natural organic particles, plastic and other polymers 
nanoparticles. 

Chaturvedi and Dave 
(2021) 
Graca et al. (2018) 
Klaine et al. (2008) 
Malakar et al. (2021) 
 

 

In this sense, it has been possible to detect, monitor, and quantify 

EPs in different water bodies, which have allowed the establishment 

of some important features about EPs. For example, the relationship 

between the degree of development (including, social and 

technological aspects) of a society and the organic pollution degree 

of water, as well as geographical distributions of EPs around the 

world have been established, which is of utmost importance to 

facilitate the design of strategies to solve problems associated to 

their pollution (Wen et al., 2017). Also, one of the important aspects 

of EPs that has been studied in detail is their toxicity to biota, from 

aquatic species, like fishes, to human beings. Through this class of 

study, it has been possible to determine different harmful effects of 

EPs, e.g., histopathological effects, sexual disorders, oxidative 

stress, acute toxicity, respiratory inhibition, cancerous diseases, 

among others, even at concentrations since ng/L, depending on the 

type of pollutant and the time of exposure (La Farré et al., 2008; 

Pablos et al., 2015). Likewise, current research trends are focused 

on determining and understanding the fate, environmental 

interactions and metabolic pathways of EPs and their by-products, 

which is important to establish treatments for diseases associated 

with EPs, among other things (Vasilachi et al., 2021).  

As can be seen above, water pollution by EPs is a multidisciplinary 

issue, of not only a scientific nature but also concerning politics and 

society. Today, this problem is still approached from different 

points of view: analytical chemistry, metabolomics, environmental 

sciences, separation sciences, engineering, and so on. For this, the 

research on EPs is one of the most important environmental research 

fields and it will continue for a long time while it is possible to give 

some substantial solutions to this problem.  

 

3. Emerging organic pollutants (EOPs) in water 
 

Although there is no unique and definitive definition about EPs, 

there are important characteristics that are mentioned in any 

definition of them: different nature, different origin, and potential 

harmful effects to biota (Geissen et al., 2015; Peña-Guzman et al., 

2019; Vasilachi et al., 2021). Firstly, the nature and characteristics 

of EPs are diverse, for example, they can be organic or inorganic, 

polar or nonpolar, dissolved or undissolved, metabolizable or non-

metabolizable compounds. Also, they can have different types of 

functional groups (i.e., carboxylic acid, alcohols, amines, thiols, 

etc.) or be able to be present in different states (Calvo-Flores et al., 

2018; Cvetnić et al., 2019). Secondly, sources of EPs are diverse 

and can be classified as natural (e.g., organic matter, mineralization, 

volcanic activity) or anthropogenic (e.g., agriculture, industry, daily 

household activities). In this way, pollutants can reach water bodies 

resulting of various processes, such as discharge processes, surface 

runoff, atmosphere precipitation, or subsurface infiltration (Ahamad 

et al., 2020). Thirdly, depending on their concentration, EPs can 

cause many harmful effects on biota and especially on humans, who 

may suffer gastrointestinal, kidney, liver, nervous system and 

immune system disorders (Pablos et al., 2015; Sanchez and Egea, 

2018).  

Therefore, various similar definitions have been mentioned through 

the development of this environmental issue. In particular, Sauvé 

and Desroires (2014) reviewed on the concept of EPs and 

established the following: “EPs are naturally occurring, manufac-

tured or man-made chemicals or materials which have now been 

discovered or are suspected present in various environmental 

compartments and whose toxicity or persistence are likely to 

significantly alter the metabolism of a living being”. Thus, and in a 

general way, EPs are understood as a class of chemical compounds 

present in the environment by natural and/or anthropogenic sources 

with a perceived or veridical threat to living beings, and in almost 

all cases, with a lack of published health criteria (Lei et al., 2015; 

Peña-Guzman et al., 2019). It is important to be highlight that the 

term “emerging pollutant or contaminant” is not only applied to new 

substances, i.e., newly introduced chemicals into the environment, 

but also applies to known compounds with previously unrecognized 

harmful effects on ecosystems (Petrovic and Barceló, 2006). It has 

also been recommended to use the concept of “contaminants of 

emerging concern” (Geissen et al., 2015; Sauvé and Desroires, 

2014). Likewise, some authors use this concept to refer exclusively 

to synthetic organic pollutants, however, it is a limited definition 

knowing the vast quantity of chemicals that arrive in water bodies, 

their different nature and characteristics, not only limited to organic 

compounds. One reason for this may be the relatively high quantity 

of organic emerging pollutants with respect to those inorganic 

pollutants, and their use in daily life (Ahamad et al., 2020). In this 

review, the term “emerging organic pollutants”, or simply EOPs, 

will be used to refer to EPs but only to those of organic nature. 

Nowadays, a high quantity of EOPs have been detected and 

reported. For example, the European Union reported in 2016 more 

than 1000 substances as EOPs through its NORMAN network, a 

special platform designed for monitoring and tracking these 

pollutants (Dulio et al., 2018; NORMAN, 2021). The situation is 

not different for North America, Asia and Latin America, where the 

reports about EOPs have had a consistent increment since 2000 and 

it can be calculated thousands of EOPs in their environment (Bunke 

et al., 2019; Ramírez-Malule et al., 2020).  
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3.1. Types of EOPs 
 

Due to the diversity of reported EOPs, they are usually classified in 

almost 20 different classes related to their use or function. The main 

ones are: pharmaceuticals, pesticides, illicit drugs, personal care 

products, industrial chemicals and additives, water disinfection by-

products, waterborne pathogens, biological toxins, and 

nanomaterials (Abdulrazaq et al., 2020). Table 1 shows a 

summarized description and some examples of each one, while 

Figure 1 shows the most representative examples of EOPs. 

Among them, pharmaceuticals are one of the best known, with an 

increasing production and use due to the improvement in health care 

and rising living standards. It has been reported that the worldwide 

consumption of pharmaceutical compounds is about 100,000 tons 

per year and more than 10,000 pharmaceuticals are approved for 

humans, many of which have been found in aquatic environments 

at concentrations of ng/L to low µg/L range (Derksen et al., 2004; 

Kümmerer, 2010; Parra-Saldivar et al., 2020). These EOPs are 

subdivided into different classes of compounds according to their 

characteristics and functions, such as antibiotics, analgesics, 

hormones, β-blockers, and blood lipid regulators (Ahamad et al., 

2020). Some representative examples of pharmaceuticals as EOPs 

are analgesics and nonsteroidal anti-inflammatories such as 

ibuprofen, acetaminophen (or paracetamol), and diclofenac, which 

are used to relieve pain, reduce inflammation and some symptoms 

like fever. The common dosage of these drugs is a few hundreds of 

mg per day, part of which is completely transformed into the body, 

generating a series of derived metabolites, and the rest is excreted 

as an unchanged molecule (Marchlewicz et al., 2015; Murdoch and 

Hay, 2015).
 
Figure 1. Chemical structures of some representative EOPs. 
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Other representative examples are antibiotics, such as tetracycline, 

oxytetracycline, erythromycin, and ciprofloxacin, employed to kill 

or inhibit the growth of microorganisms (Godoy and Sánchez, 

2020); β-blockers, such as propranolol and metoprolol, which have 

a direct effect on the autonomic nervous system, playing a role in 

blood pressure control (Godoy et al., 2017; McBean et al., 2018; 

Wiysonge et al., 2017); hormones like estrone, 17β-estradiol, and 

17β-ethinylestradiol (Houtman et al., 2018; Méndez et al., 2017); 

and lipid regulators like clofibrate, clofibric acid, and bezafibrate 

(Calvo-Flores et al., 2018; Hernando et al., 2007; Zhang et al., 

2020a). Likewise, a few pharmaceutical compounds used for 

particular purposes can be included in this category of EOPs due to 

the increment of their usage. For example, biological thiols (i.e., 

RSH, where R is an organic group) such as L-cysteine and N-

acetylcysteine are used in various pharmaceutical formulations due 

to their quelating power against different metal ions and their redox 

behavior (Mokhtari et al., 2017; Sales et al., 2003). Also, different 

pharmaceutical excipients, e.g., tartrazine, aspartame, 

benzalkonium chloride, propyl gallate, etc., have been found in 

water environments and it has been determined that they could 

represent a serious environmental risk (Carlsson et al., 2006; 

Haywood and Glass, 2011). In this sense, there is a high variety of 

pharmaceutical compounds from a chemical point of view, i.e., 

presence of different functional groups and different ways to carry 

out a chemical reaction, which in almost all cases are not 

metabolized before being excreted. For this, one important aspect of 

study is the determination of metabolites or by-products of 

pharmaceutical compounds in the environment and the metabolic 

pathways by which they can interact with natural structures and 

microorganisms; as well as their ecotoxicological effects (Gogoi et 

al., 2018; Rivera-Utrilla et al., 2013). 

In some cases, personal care compounds and illicit drugs are linked 

to pharmaceutical compounds, however, there is an important 

difference according to their usage (Gil et al., 2012). Firstly, 

personal care compounds include disinfectants, soaps, insect 

repellents, preservatives, fragrances, and sunscreen ultraviolet 

filters, which are employed to satisfy any particular aspect of the 

care of the human body (Pemberthy et al., 2020). These compounds 

are highly used in daily life, even in higher quantities than those 

recommended. Additionally, personal care compounds can reach 

water bodies through other important routes like recreational 

activities, bathing and washing clothes (Lei et al., 2015). Thus, it 

has been reported that personal care compounds such as triclosan, 

triclocarban, and galaxolide, may be present in water bodies at 

concentrations of a few nanograms per liter to a few milligrams per 

liter (Chaturvedi et al., 2021; Montes-Grajales et al., 2017). 

On the other hand, illicit drugs correspond to legal (e.g., morphine) 

or illegal drugs (cocaine, methamphetamine) used for recreational 

purposes, i.e. in order to generate a psychostimulant effect on the 

human body (Davoli et al., 2019). They can be divided into opiates, 

central nervous system depressants, central nervous system 

stimulants, and hallucinogens (Calvo-Flores et al., 2018). There are 

different sources by which these substances and their metabolites 

can reach water bodies: human excretion, sweat, saliva, accidental 

spillage or wastes from clandestine laboratories (Binelli et al., 

2012). Actually, hundreds of millions of people use illicit drugs. For 

example, cannabis is used by about 130-190 million people 

worldwide, followed by cocaine and opiates (Binelli et al., 2012). 

These facts are the reason why these substances began to be found 

in water bodies, even at levels of µg/L (Archer et al., 2017; 

Castiglioni et al., 2006; Fantuzzi et al., 2018). 

Pesticides are another important class of EPs in water environments. 

According to EPA (2021), this term is used to refer to a broad class 

of substances employed for preventing, destroying, repelling, or 

mitigating any pest. This includes different groups of “-cide” 

compounds used to treat particular pests, e.g. herbicides (i.e., 

weeds), fungicides (i.e., fungus), insecticides (i.e., insects), and so 

on (Calvo-Flores et al., 2018). It has been estimated that the global 

production of pesticides exceed 4 millions tonnes by 2018 

(FAOSTAT, 2021), out of which approximately 48 % are 

herbicides, 30 % are insecticides, 18 % are fungicides, and 4 % are 

other pesticides (Sharma et al., 2019). These chemical compounds 

or mixtures are highly used to increase agricultural productivity, 

mainly; however, it is estimated that only 0.1 % of the applied 

pesticides reach the targeted pests, while 99.9 % remain long in the 

environment and can be bioaccumulated due to their characteristics 

such as long half-life and high lipophilicity (Sarker et al., 2021). 

Thus, they reach surface waters and groundwater through different 

sources, e.g. by chemical runoff during improper storage, loading, 

and disposal, as well as their misapplication; through their use in 

urban areas, air transport, runoff and erosion events, which facilitate 

the gradual leaching of these compounds into soil and water bodies 

(Peña et al., 2020; Vryzas, 2018). Among the most representative 

pesticides reported in water environments are herbicides such as 

atrazine, glyphosate, and 2,4-dichlorophenoxyacetic acid or simply 

2,4-D (Chandra and Usha, 2021; Charles et al., 2019; Li et al., 

2021a); insecticides such as endosulfan, chlorpyrifos, and 

carbofuran (Campbell et al., 2004; Jacob et al., 2020; Sathishkumar 

et al., 2021); and fungicides such as azoxystrobin and tebuconazole 

(Manjarres-López et al., 2021; Rodrigues et al., 2017; Syafrudin et 

al., 2021; Zubrod et al., 2019).  

Another kind of EOPs are industrial chemicals and additives, which 

has emerged with the industrial development and has been detected 

recently in surface waters and groundwater, in comparison with 

pesticides and pharmaceuticals (Calvo-Flores et al., 2018). These 

compounds, as their name suggests, correspond to different 

chemicals used in any part of an industrial process or added to any 

product to provide it with particular properties. Thus, they are 

classified based on their function or some particular characteristic: 

antioxidants, flame retardants, plasticizers, dyes, polyaromatic 

hydrocarbons, surfactants, antifouling compounds, volatile organic 

compounds, gasoline additives, among others (Liu et al., 2019; 

Mukhopadhyay and Chakraborty, 2021; Pandey et al., 2021). An 

important example of these pollutants is bisphenol A or simply 

BPA, a compound used as raw material in the production of 

polycarbonates and epoxy resins plastics, as well as additive in 

different plastics due to its antioxidant and flame retardant 

properties (Plattard et al., 2021). Due to the high usage of BPA, its 

levels have increased in water environments around the world, 

reporting concentrations at ng/L level (Dupuis et al., 2012; Wang et 
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al., 2020b). Also, there are chlorinated BPA derivatives, which are 

products of the reaction between BPA and desinfectan products 

such as sodium hypochlorite (NaOCl) and chlorine, detected and 

reported in levels higher than 50 ng/L in industrial wastewater, 

sewage sludge, sediments, distribution pipes, and drinking water 

(Andra et al., 2015; Cantoni et al., 2021; Fukazawa et al., 2001). 

This is an important example of how interactions between a 

pollutant and the environment can result in even more harmful 

substances. Other industrial chemicals of emerging concerns are 

flame retardants, used as additives to avoid or diminish the further 

development of ignition, such as 3,3’,5,5’-tetrabromobisphenol A, 

tris(2-chloroethyl phosphate), and some polychlorinated alkanes 

(Cristale et al., 2013; Liu et al., 2021; Yang et al., 2019); dyes, used 

widely in textile industry to provide colors to clothing, like 

methylene blue, acid blue 25, orange II, crystal violet, acid orange 

7, and alizarin yellow (Hanafi and Sapawe, 2020; Zhou et al., 2021); 

and plasticizers, employed to impart flexibility and workability to 

plastics, such as di-(2-ethylhexyl) phthalate, diethyl phthalate, di-n-

butyl phthalate, and benzyl butyl phthalate (Teuten et al., 2009; 

Zhang et al., 2018). On the other hand, some industrial chemicals 

such as surfactants, e.g., nonylphenol and octylphenol ethoxylates, 

and antifouling compounds, e.g., tributyltin and irgarol, have 

emerged as monitored pollutants in water environments due to the 

current increment of detergent industry and membrane technology, 

respectively (Kamei et al., 2020; Kortner et al., 2009; Vargas-

Berrones et al., 2020). 

Even in the process of treatment, water can be polluted. This is the 

case of water disinfection by-products as EOPs, which are formed 

in the treatment of polluted water by disinfectant agents like 

chlorine (Cl2), ozone (O3), chloramine (NH2Cl), and UV radiation 

(Park et al., 2016). Among these, chlorine is known as one of the 

main disinfectant agents for water treatment since the identification 

of waterborne pathogens, being inexpensive and relatively easy to 

produce and use (Mazhar et al., 2020). Therefore, it is highly used 

for disinfection nowadays. However, it has been reported that 

chlorine interacts with different components of dissolved organic 

matter in polluted water, leading to the generation of various 

halogenated by-products with potential harmful to living organisms 

(Dong et al., 2021a). More specifically, when chlorine gas is put in 

contact with water, hypochlorous acid is formed (Cl2 + H2O → 

HOCl + H+ + Cl-), which is a powerful oxidant agent that kills 

pathogenic microbes present in the medium. In addition to this, and 

because of its non-specific action, hypochlorous acid also reacts, 

e.g., through oxidation, addition, and substitution reactions, with 

dissolved organic matter (fatty acids, humic acids, fulvic acids, 

amino acids, lipids, etc.), producing a high quantity of chlorinated 

by-products, e.g., chloroform, trichloroacetic acid, 

dichloroacetamide, etc (Alexandrou et al., 2018; Gilca et al., 2020). 

The same applies to other kinds of disinfectants, which through 

different action pathways lead to many EOPs such as carbonyl 

compounds, brominated compounds, and nitro compounds, from 

natural organic matter (Ding et al., 2019). Today, more than 600 

water disinfection by-products have been reported, many of which 

pose an environmental hazard (Srivastav et al., 2020).  

As mentioned early, microorganisms have been recognized as 

important water pollutants since the last century. Until now, they 

constitute a special class of EOPs because of their ability to generate 

resistance against disinfection treatments, their ability to mutate and 

adapt to changing conditions of the environment, their different 

pollution sources, and the lack of a definitive and completely 

effective treatment methodology for their removal and/or 

elimination from water media (Channa et al., 2021; Espinosa et al., 

2020). Different pathogens are included in this category: bacteria, 

viruses, protozoa, and helminths. Some important examples are 

bacteria such as Eschericia coli, which can cause acute diarrhea, 

bloody diarrhea, and gastroenteritis; Pseudomonas aeruginosa, 

which can cause infections on lungs, urinary tract, and kidney; and 

Helicobacter pylori, which is precursor of chronic gastritis, ulcer 

disease, and gastric cancer (Deng et al., 2019). Also, some important 

waterborne viruses are hepatitis A and B viruses, as well as rotavirus 

capable of causing gastroenteritis. Likewise, protozoa like 

Acanthamoeba spp., precursors of amoebic, meningoencephalitis, 

keratitis, and encephalitis, and helminths like Dracunculus 

medinensis, which can cause ulcerating skin infection, are of 

emerging concern (Bridle, 2014; Ramírez-Castillo et al., 2015). 

Although illness caused by waterborne pathogens have declined 

since the last century, it is estimated that more than 750 million 

people are directly affected by waterborne pathogens worldwide due 

to the lack of efficient water disinfection treatments (Pruden, 2014). 

Another type of natural-occurring water pollutant is biological 

toxins or simply biotoxins. These are biological molecules or 

metabolites produced by some living organisms as a defensive 

strategy, mainly. However, they can reach the water environment 

and, through it, enter the human body, causing different diseases 

and, in some cases, death (Alves et al., 2019; Joseph, 2017). For 

example, fungi can produce ribosome-inactivating proteins, which 

are capable of inhibiting RNA translation and cause cellular 

apoptosis (Dosio et al., 2011; Ng, 2004). Fungi, in conjunction with 

bacteria and other microorganisms, are present in different 

environments and materials, colonizing and producing biofilms 

(Espinosa et al., 2020), through which their toxins reach surface 

water and tap water. Likewise, seawater and freshwater are also 

polluted by biotoxins produced from algal bloom, i.e., 

cyanobacteria, dinoflagellates, and diatoms, which have potent 

neurotoxic and hepatotoxic effects, e.g., microcystins, endotoxins, 

nodularins, anatoxins, and saxitoxins (Liu et al., 2021b; Tran et alo., 

2020).  

In addition, several pufferfish species (Tetraodontidae family) 

produce a potent neurotoxin called tetrodotoxin, which is capable of 

blocking voltage-gated sodium channels of nerve fibers, leading to 

weakness, paralysis and even death (Chen et al. 2016; Ramba-

Alegre et al., 2017). In this way, a major reason for the increment of 

biotoxins in water media is nutrient discharges in many 

environments, which lead to an increased development of algal 

blooms and other toxin-producing organisms (Calvo-Flores et al., 

2018). 

For its part, nanotechnology has grown rapidly since the beginning 

of this century,  being widely applied in many fields  and products, 
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e.g., cosmetics, textiles, medicines, paintings, electronics, etc. In 

this category, fullerenes, carbon nanotubes, graphene, polymer 

nanoparticles (including plastics), composite materials, and natural 

organic particles (i.e., clays, organic matter, metal oxides, etc.) are 

included, which, depending on the case, have unique properties such 

as high surface area, high thermal and electrical conductivity, high 

surface reactivity, and photocatalytic properties (García-Quintero 

and Palencia, 2021; Turan et al., 2019). Due to their high usage, 

nanomaterials have become a water pollutant of emerging concern, 

reaching water bodies through different sources: wastewater 

effluents, direct discharges, accidental spillages, air transportation, 

and rainwater runoff (Klaine et al., 2008). An important example of 

this is plastic nanoparticles. They can be pre-formed and reach 

aquatic environments through several pathways, but also, they can 

be formed by the interaction of plastic materials with the 

environment, i.e., degradation of plastics by abiotic or biotic process 

(Canesi et al., 2015). In this way, these plastic nanoparticles interact 

with different aquatic organisms and cause adverse effects, e.g., 

oxidative stress, metabolism modification, affectation of cellular 

function, and even cellular apoptosis (Peng et al., 2020). On the 

other hand, carbon nanomaterials such as fullerenes, carbon 

nanofibers, carbon nanotubes, graphene nanomaterials, and even 

their chlorinated derivatives, have been reported on water 

environments at ng/L levels (Alpatova et al., 2013; Sanchís et al., 

2018). Some harmful effects to living organisms like metabolic 

disturbance, respiratory system affections, and neurotoxic effects, 

have been observed for these materials (da Rocha et al., 2019; 

Shvedova and Kisin, 2008). Also, natural organic nanoparticles play 

an important role in nanomaterial pollution and represent a potential 

hazard for living beings. These have anthropogenic and natural 

pollution sources, e.g., organic matter degradation, volcanic 

activity, incineration, etc., and have been detected at mg/L level in 

groundwater and aquifers (Ermolin et al., 2018; Malakar et al., 

2021). 

 

3.2. Effects on environment and human health  
 

The diverse structural characteristics and behavior of EOPs lead to 

different modes of action and effects in the environment and in the 

human body, which is an aspect of great interest in the current 

environmental research. More specifically, EOPs are distributed 

around the globe through many pollution sources, reaching different 

ecosystems and environments, i.e., rivers, oceans, soils, air, forest, 

etc., and interacting directly or indirectly with many species present 

there, e.g., plants, microorganisms, animals, and humans. These 

interactions result in different effects, which in most cases, if not all, 

are harmful or represent a danger to the development of life (see 

Figure 2) (Tang et al., 2019). 

 
Figure 2. Effects of EOPs on environment and human health. It is important to realize the connection between different living organisms and ecosystems, indicated by 

dotted arrows, which results in indirect harmful effects caused by EOPs. 
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Firstly, it has been discussed that EOPs can contribute to climate 

change, altering temperature, salinity of water bodies, and natural 

phenomena like precipitation; which led to an environmental 

disturbance that can affect different ecosystems (Noyes et al., 2009). 

Secondly, it has been reported that EOPs can affect the 

physicochemical characteristics of soils such as pH, soil 

aggregation, bulk density, and water holding capacity (de Souza 

Machado, 2018; Wan et al., 2019). Also, they can cause imbalance 

in the nutrition of soils and, in this way, affect the growth of plants 

(Lozano and Rillig, 2020; McGinnis et al., 2019). Plants can uptake 

EOPs from the soil through their roots, allowing them to enter in 

important metabolic pathways and interact with key enzymes and 

metabolites, which results in harmful effects such as decreased 

inflorescence, yield loss, reduced production of secondary 

metabolites, vitamin deficiencies, among others (Bouaicha and 

Corbel, 2016; Haq and Kalamdhad, 2021). Once EOPs reach soils 

and water bodies, they can interact with their microbiome, affecting 

them at different degrees. For example, EOPs can alter the behavior 

of microorganisms, their metabolism, and their reproduction. 

Furthermore, an important effect on microorganisms is the increase 

in drug resistance by the continuous exposure to EOPs, which 

indirectly affects humans in the treatment of different microbial 

diseases (Cerqueira et al., 2020; Gomes et al., 2020). In animals, 

EOPs generate notable changes in behavior, e.g., reproduction, 

animal movement, predation-avoidance, aggression and grouping, 

mainly due to physiological alterations such as impaired sensory or 

cognitive abilities, altered endocrine/neural signaling, and 

metabolic dysfunction (Saaristo et al., 2018). From a biochemical 

point of view, EOPs can increase or diminish the hormonal activity 

in animals, or in the worst case, they block the hormonal action by 

competing with the hormone receptor, mimicking or impersonating 

the endogenous hormones. This results in behavior alterations since 

hormones participate in the control of reproduction, sexual 

differentiation, organ coordination, brain organization, among 

others (Arguello-Pérez et al., 2019; Jacquin et al., 2020). Likewise, 

the alteration of the behavior of an animal can indirectly affect other 

animals linked to the same food chain or within the same ecosystem 

(Brodin et al., 2014; Fleeger et al., 2003). In addition, serious 

conditions such as cancer and teratogenicity in animals due to the 

exposure to EOPs have been reported (Amoatey and Baawain, 2019; 

Pesavento et al., 2018). Finally, EOPs reach humans by the already 

mentioned pollution routes, i.e., water, air, and soils, but also by 

bioaccumulation of these pollutants in the food chain (Amutova et 

al., 2021). In the human body, EOPs can cause a diversity of 

affections depending on the degree and time of exposure. For 

example, they produce a series of allergic responses, e.g., skin and 

ocular irritation, and acute effects with direct actions in the central 

nervous system (Enyoh et al., 2020). Some symptoms associated 

with EOPs toxicity are vomiting, dizziness, breathing difficulties, 

anxiety, depression, muscle ache, and headache (Bhavya et al., 

2021). More critical effects caused by EOPs are cardiovascular 

problems, diabetes, endocrine disruption, infertility, oxidative 

stress, immune suppression, liver dysfunction, and respiratory 

problems (Alharbi et al., 2018; Baderna et al., 2013). Moreover, 

long exposure to EOPs lead to cancer and even DNA alterations (Lei 

et al., 2015; Liu et al., 2021c). 

Ecotoxicological analysis of EOPs and their effects on human health 

remains an important research topic due to the limited knowledge 

obtained until now and the difficulties associated with measuring 

defects caused by EOPs. Some aspects such as metabolic pathways, 

interaction sites, toxicity levels, and synergistic effects are of 

emerging interest. Likewise, according to the available literature 

and the reported effects of EOPs it is important to realize that it is 

necessary to focus on the development of removal methodologies 

and the regulation of the use and disposal of these organic 

substances. 

 

4. Detection and monitoring methodologies 
 

Detecting and monitoring EOPs in the environment involves a series 

of carefully-prepared steps through which it is possible to ensure a 

correct determination of the pollutant level in the medium, avoiding 

and/or eliminating possible bias or errors in the analysis due to the 

presence of interferences, matrix effects, or instrumental failures. 

Ideally, these procedures should be as environmentally friendly as 

possible and at a low economic and energetic cost, however, without 

compromising reliable results. In this point, it is important to realize 

that because of the diversity of characteristics and properties of 

EOPs, i.e., chemical state, acidity, polarity, reactivity, solubility, 

etc., and the complex mixtures of these pollutants in different water 

environments, it is almost impossible to develop an analytical 

method that ensures the detection of all well-known organic 

pollutants. For this, different methodological processes and 

techniques for the determination of each class of EOPs are needed. 

In a general sense, each detection methodology focused on EOPs in 

water samples requires, after sampling, a sample pretreatment, 

which involves extracting, concentrating, and cleaning up the 

sample with the targeted EOPs. After that, it is necessary to select a 

proper analytical method by which the pollutants are separated, 

detected, and quantified (see Figure 3) (Hartmann et al., 2020; Tang 

et al., 2019).

 
Figure 3. Main steps involved in the detection and monitoring processes of EOPs. 
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4.1. Sampling  
 

Before EOPs detection, it is necessary to define the best way to take 

the sample, in this case, from water environments; including the 

consideration of aspects such as geographic distribution, sampling 

frequency, weather, matrix, and sample quantity, which are selected 

based on the type of analysis and the pollutants to be measured 

(Geissen et al., 2015). In this way, sampling is one of the primary 

steps of every monitoring program focused on EOPs and it could be 

achieved through different methods and plans. Firstly, direct 

sampling using the hand is the most commonly used and easiest 

method. It is based on taking the sample directly from the water 

stream in a particular container using the hand. It has been suggested 

that sample containers or sampling equipment should be made from 

aluminum, stainless steel, fluorocarbon polymers, and glass, since 

other materials like polyethylene, rubber, or other plastics, can 

absorb or desorb targeted EOPs from/into the sample (Alvares and 

Jones-Lepp, 2010). This sampling method applies not only to take 

grab or single samples, but also to take composite samples, which 

are representative of a defined profile of the water stream (Metcalfe 

et al., 2014). When it is necessary to take samples from deeper 

waters, submersible bailers or thief samplers are commonly used. 

These are based on a bottle or tube that serves as a water collector 

through caps or check valves (Llamas et al., 2020). Moreover, 

sampling from groundwater requires the utilization of portable 

peristaltic pumps to draw the water sample from deeper monitoring 

or supply wells and collect it into a particular vessel. Also, 

automated sampler devices are used to take samples from surface 

waters and groundwater when the sampling is required at 

predetermined time intervals or the presence of water may be 

intermittent. Some sophisticated automated sampling devices have 

the possibility of taking a sample or multiple samples, collecting 

them into refrigerated container vessels, and being programmed via 

land-line or cellular phone connections (Erikson et al., 2013; 

Mucciarone and Dunbar, 2020).  

On the other hand, passive sampling devices (PSDs), or also time-

integrated sampling devices, are an alternative to grab sampling 

techniques for surface waters and groundwaters when it is necessary 

to detect and quantify organic pollutants at very low concentrations, 

since grab sampling usually require large sample volumes for this 

and the results are generally not satisfactory (Hawthorne et al., 

2009). PSDs are used to collect a pollutant sample at a 

predetermined interval of time by means of pollutant retention 

processes, which means that the pollutant concentration results to 

be integrated over the sampling time. Thus, PSDs are very useful to 

determine levels of exposure of aquatic organisms to EOPs in a 

certain period of time (Garces et al., 2018; Silvani et al., 2017). In 

general, PSDs are constructed similarly and their operation is the 

same: they have a phase, called the receiving phase, where the 

analytes are retained through a diffusion process induced by the 

pollutant concentration gradient established between the external 

phase (i.e., water environment) and the receiving phase. The rate of 

chemical uptake and the selectivity of the transport process of the 

analytes are regulated by a membrane, called the limiting phase 

(Godlewska et al., 2020). In this sense, different PSDs have been 

designed and highly implemented to detect EOPs, among which 

semipermeable membrane devices (SPMDs) and polar organic 

chemical integrative samplers (POCIS) have been extensively 

explored (Harman et al., 2008). SPMDs are based on a lay-flat low 

density polyethylene membrane tube containing a small volume of 

a neutral lipid such as triolein, which serves as a receiving phase for 

hydrophobic EOPs (i.e., chemicals with moderate to high octanol-

to-water partition coefficients, log Kow > 3) (Kim et al., 2014). For 

example, SPMDs have been utilized to measure low concentrations 

of alkylphenols, polychlorinated biphenyls, polybrominated 

diphenyl ethers, and other polycyclic aromatic hydrocarbons (Lima 

et al., 2019; Miège et al., 2012; Smedes, 2019).  For its part, POCIS 

are fabricated using a sorbent or mixture of sorbents, which serve as 

the receiving phase, sandwiched between two sheets of a 

microporous polyethersulfone membrane. Initially, POCIS were 

fabricated using poly(divinylbenzene)-co-N-vinylpyrrolidone as the 

receiving phase, which allowed the retention of polar EOPs, or in 

other words, those pollutants with log Kow < 3 (Harman et al., 2012). 

However, new receiving phases have been designed through time to 

expand the possibility of POCIS to measure more EOPs, even those 

with hydrophobic nature. Some examples of these sorbents are 

Strata-X, Oasis MAX, Chromabond HRX, Strata XAW, and Strata 

X-CW, which are finely divided hydrophobic or hydrophilic beads 

made from different functionalized polymers (Godlewska et al., 

2021a). Also, molecularly imprinted polymers, ionic liquids, and 

carbon nanotubes have been used as the receiving phase (Feng et 

al., 2019; Godlewska et al., 2021b; Wang et al., 2017). POCIS have 

been used to measure levels of a multitude of EOPs in water 

environments, including mainly pharmaceuticals, pesticides, and 

hormones (Criquet et al., 2017; Cristóvão et al., 2021; Gong et al., 

2018). Importantly, the parts of these samplers can be modified, e.g., 

the type of membrane, receiving organic phase, or sorbent, and be 

used in conjunction with the aim of retaining and measuring a 

greater quantity of EOPs at the same time, obtaining higher 

efficiencies, better cost-benefit relationships, and simplified 

analysis (Esteve-Turrillas et al., 2007; Godlewska et al., 2020). 

However, these present some disadvantages such as complicated 

calibrations and the difficulty of assessing whether equilibrium has 

been reached or not due to variability of parameters such as 

temperature, water flow, and biofouling (Harman et al., 2012). 

Additionally, other types of PSDs such as Chemcatchers, 

polyethylene strips, polymers on glass, and solid-phase 

microextraction devices, have also been developed and used in 

water sampling (Alvarez and Jones-Lepp, 2010). 

 

4.2. Sample pretreatment 
 

After sampling, it is necessary to carry out a sample pretreatment 

focused on preparing the sample for further analysis, i.e., the 

analytical determination of EOPs in the sample. This pretreatment 

typically involves clean-up, extraction, and pre-concentration 

processes of the sample to be analyzed. First, cleaning-up the 

sample requires the elimination of possible interferences or 

unwanted material in the sample matrix such as undissolved organic 

matter and/or other microscopic materials, metal ions, oxygen, and 
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other chemical interferences, through methodologies like filtration, 

centrifugation, flocculation/coagulation, pH-adjustments, among 

others (Cerutti et al., 2019). After this, extraction and 

preconcentration methodologies are required to generate an 

analytically-detectable concentration of EOPs in the sample; 

however, this is no necessary in the cases where PSDs have been 

used as sampling techniques, since through their operation, these 

devices already extract and concentrate EOPs from the water 

environment and these can be released later in an relatively easy 

way (Castro et al., 2021). In this sense, extraction and 

preconcentration techniques like solid-phase extraction and liquid-

liquid extraction are the most commonly used when dealing with 

EOPs in water environments (Tsai et al., 2021). However, in recent 

years innovative sample pretreatment techniques such as microwave 

assisted extraction, pressurized liquid extraction, stir bar sorptive 

extraction method, among others, have been developed and utilized 

for sample pretreatment in the monitoring of EOPs (Sanchez-Prado 

et al., 2015; Subedi et al., 2015). Next, some of these extraction 

techniques will be discussed. 

 

4.2.1. Liquid-liquid extraction (LLE) techniques 
 

As its name suggests, LLE is based on the partitioning of a 

compound between two liquid phases, in this case, an aqueous phase 

(the water sample) and an immiscible organic phase (or the 

extraction phase). Usually, the employed organic phase is ethyl 

acetate, hexane, isooctane, toluene, chloroform, or 

methylcyclohexane (Matamoros et al., 2012). However, 

supercritical fluids and superheated liquids have also been used as 

the extraction phase (Leazer et al., 2009; Maciel et al., 2018). This 

technique has been used for decades for the extraction of apolar 

organic pollutants from water samples, such that the extraction 

process is well-known and overstudied. The physicochemical 

characteristic of the compound(s) to be extracted, e.g., polarity, 

pKa, log Kows, etc.; the type of organic solvent, water:organic 

solvent ratio, the volume of each phase, and the number of 

extractions directly affect extraction efficiency and yield, as well as 

parameters like pH and ionic strength. These last two can be useful 

to enhance the extraction efficiency through the displacement of the 

partition equilibrium. It means that, at a certain pH and a generally 

greater ionic strength value, neutral and apolar molecules prefer to 

be in the apolar organic phase (Gezahegn et al., 2019).  

At first instance, the use of a hydrophobic extraction phase seems to 

be a limitation of LLE associated with the extraction restricted to 

apolar compounds only; however, different chemical derivatization 

methodologies have been successfully proposed to overcome this, 

not just for enabling the extraction of polar organic pollutants, but 

also as a necessary treatment prior to their analytical determination, 

e.g., by gas chromatography (Manca et al., 2017). In these 

methodologies, different derivatization reagents react in some way 

(for example, through alkylation, acylation, or silylation reactions) 

with the targeted compounds with the aim to modify their 

properties, in this case, to convert them into more apolar (and 

volatile) compounds. Thus, the new derivative compound can be 

extracted and quantified properly (Baghdady and Schug, 2016). 

Some particular examples of derivatization reagents include N-

methyl-N-(tert-butyldimethylsilyl), trifluoroacetamide, bis(trime-

thylsilyl) trifluoroacetamide, N-methyl-N-(trimethylsilyl) trifluoro-

acetamide, trifluoroacetic acid, diazomethane, phenazine 

methosulfate, dansyl chloride, N,N-diethyldithiocarbamate, isobutyl 

chloroformate, and acetic anhydride (Alvares and Jones-Lepp, 

2010; Carro et al., 2013; Jain and Verma, 2018; Wang et al., 2019a). 

Also, derivatization agents which provide some particular 

properties, like fluorescence, to the analyte have been used, e.g., 

fluorescamine. This is particularly useful when the employed 

analytical technique poses a fluorescence detector (El-Yazbi et al., 

2019). Other important methodologies focused on enhancing the 

extraction efficiency and capability are ion-pairing, complexation, 

phase transfer catalysis, and nanoparticle-assisted extraction 

(Basheer et al., 2019).  

According to the above, classic LLE has been applied for decades 

to the extraction of a high variety of EOPs such as pharmaceuticals, 

including antibiotics, analgesics, anti-inflammatories, 

cardiovascular agents, and anxiolytics; hormones, e.g., 17-𝛽-

estradiol, 17-𝛼-ethinylestradiol, and estrone; pesticides such as 

chlorpyrifos and atrazine; and polyhalogenated aromatic 

hydrocarbons (Borrull et al., 2020; Miossec et al., 2020; Wang et 

al., 2013). Nevertheless, due to the main drawbacks of LLE like the 

high consumption of time and the use of large volumes of toxic 

organic solvents, which results in a laborious procedure and, in 

many cases, an expensive and contaminating extraction technique, 

some derivative LLE techniques have been developed. Among 

these, liquid phase microextraction techniques such as dispersive 

liquid-liquid microextraction (DLLME), single drop 

microextraction (SDME), and hollow-fiber liquid-phase 

microextraction (HF-LPME) are included (Carasek et al., 2018). 

 

4.2.1.1. Liquid-phase microextraction 
 

First, DLLME is a type of LLE technique at a miniaturized level 

(microliter level) based on the dispersion of the extraction phase into 

the aqueous phase, where the targeted EOPs are found. 

Additionally, it may require a dispenser solvent, which is mixed 

with the extraction solvent and facilitates the dispersion process; 

and the extraction phase needs to have a high-density and apolar 

nature, which allows its dispersion in water and its recovery easily 

by centrifugation at the end of the process (Quigley et al., 2016). 

This arrangement provides certain advantages over conventional 

LLE such as fast extraction and low costs, due to the high mass 

transfer of apolar EOPs from the aqueous phase to the finely 

dispersed organic phase and the low quantity of solvent volumes 

employed in the process, respectively (Li and Ding, 2021). On the 

other hand, SDME is based on the introduction of a drop of 

extraction phase into the aqueous phase employing a microsyringe. 

The utilization of an organic solvent drop enhances the mass transfer 

process and, consequently, the extraction rate due to a greater 

surface area-to-volume ratio of the extraction phase, resulting in “a 

minimalistic technique capable of providing excellent analytical 

data” as Tang and co-workers (2018a) mentioned. Some advantages 

of SDME are low instrumental requirements, simplified operation, 
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non-complex setup, fast extraction, and the employment of low 

quantities of organic solvents. However, it has an inherent and 

important drawback associated with drop instability, which led to 

the option of considering other microextraction techniques (Jain and 

Verma, 2011; Ye et al., 2007). For its part, in HF-LPME a 

hydrophobic hollow fiber is used as the container of a small amount 

of the extraction phase. More specifically, the extraction phase is 

injected into the lumen and pores of the hollow fiber, which is in 

contact with the aqueous phase or the sample, such that the targeted 

EOPs can diffuse through the pores by means of a partition process 

between the two phases (Kraševec and Prosen, 2021). With HF-

LPME it is possible to obtain high enrichment and selectivity 

factors, ensuring excellent pollutant concentration and sample 

clean-up (Khan et al., 2020). Also, simplicity and low costs are 

linked to this technique (Savatierra-stamp et al., 2018). However, 

some drawbacks are generally slow extraction, the hollow fiber 

needs to be replaced after each extraction, and there is a lack of 

commercially available equipment (Abdel-Rehim et al., 2020; 

Gjestad and Pedersen-Bjergaand, 2013). Although the above-

mentioned inconvenients and/or disadvantages, these microex-

traction techniques have represented an important tool in EOPs 

monitoring, thus, through them a high variety of EOPs have been 

extracted even at pg/mL level, for example, industrial additives such 

as BPA and its derivatives; polybrominated diphenyl ethers, 

phthalate esters, hormones, preservatives, alkylphenols, pesticides, 

and pharmaceutical compounds (Li et al., 2021b; Primel et al., 2017; 

Sereshti et al., 2021; Wang et al., 2019b). In addition, some 

important advances and innovative alternatives in the design and use 

of these liquid-phase microlevel extraction technologies have been 

reported, e.g., the implementation of ionic liquids as the extraction 

phase, which provides a reliable, environmentally-friendly and 

efficient approach of the extraction process (Rivera-Vera et al., 

2019); the possibility of automation by implementation of syringe-

type extraction containers  (Senovieski et al., 2020); and the 

employment of ultrasonic radiation to significantly accelerate the 

mass transfer process, which has allowed the establishment of 

techniques such as ultrasound-assisted DLLME and ultrasound-

assisted emulsification microextraction (Regueiro et al., 2008; 

Pérez-Outeiral et al., 2016). For more details, some reviews focused 

only on liquid-phase microextraction techniques have been 

published in recent years (Carasek et al., 2018; Hashemi et al., 2017; 

Rutkowska et al., 2019). 

 

4.2.2. Solid-phase extraction (SPE) techniques 
 

SPE is the most used extraction and concentration technique applied 

to thousands of inorganic and organic compounds, including EOPs 

monitoring (Hashemi et al., 2018). In contrast to LLE and, as its 

name suggests, SPE techniques are based on an extraction process 

mediated by a solid phase, also called the sorbent. The usage of solid 

sorbents for EOPs extraction and clean-up provides some important 

advantages such as higher enrichment factors, fast procedures, and 

lower consumption of organic solvents, in comparison with LLE 

techniques. In terms of its general operation, SPE techniques work 

in three main steps: (i) conditioning the solid sorbent, which is found 

inside a cartridge, by passing a particular solvent through it to 

increase the effective surface area and to reduce possible 

interferences; (ii) loading the liquid sample through the sorbent by 

either gravity, vacuum-induced, or syringe-push flow, to promote 

pollutant retention by direct physical or chemical interactions 

between the targeted EOPs and the sorbent; and finally, (iii) 

washing the sorbent with a proper solvent or mixture of solvents to 

recover the retained EOPs (Ca et al., 2009; Filik et al., 2012). This 

principle of operation and the employed setup in SPE techniques 

have allowed the design and establishment of automated devices, 

which is a relevant advantage over LLE methodologies (Calderilla 

et al., 2018; Domínguez et al., 2016). In this way, SPE has been 

studied and explored extensively, such that different solid sorbents 

are already commercially available and they can be found in 

different configurations: thin flat discs, small cylindrical cartridges, 

and multi-well plates (Kyle, 2017). Additionally, sorbents are 

usually made from alkyl-modified silica, e.g., octadecyl-bonded 

silica, octyl-bonded silica, butyl-dimethyl bonded silica, phenyl-

bonded silica, etc.; or cross-linked copolymers, which comprise 

polystyrene divinylbenzene-based copolymers and functionalized 

hydrophobic polymers with polar and/or ionizable groups 

(Andrade-Eiroa et al., 2016). Alkyl-modified silica sorbents are 

employed as reverse phase solid-phase extractants, and through 

them, it has been possible to extract and concentrate a multitude of 

hydrophobic EOPs (Martín et al., 2017). However, these silica-

based sorbents have some important disadvantages, such as 

instability at extreme pH, low recovery when dealing with polar 

EOPs, and the presence of residual silanol groups capable of 

interacting or reacting with the analytes, adsorbing them irreversibly 

(Telepchak et al., 2004). For this reason, relevant alternatives such 

as polymeric sorbents have emerged and been explored extensively.  

Polymeric SPE sorbents, as Fontanals and co-workers (2019) 

established, “combine outstanding morphological properties that 

promote capacity and retention with tuned chemical properties that 

allow suitable interactions with many types of compounds and show 

enhanced stability under several SPE conditions”. In this way, 

pollutant-polymer interactions include Van der Waals forces, π-π 

interactions, dipole-dipole interactions, electrostatic forces, 

hydrogen bonds, and, more recently, dynamic covalent bonds 

(Drzymala et al., 2015; Faraji et al., 2019; Yang and Zhang, 2012). 

Among polymeric SPE sorbents, commercially available 

hydrophilic-lipophilic balanced polymeric phases, also known as 

HLB polymeric phases, and in-house polymeric phases are 

highlighted. These can be made either from the copolymerization of 

polystyrene divinylbenzene with another class of polymers, e.g., 

polyvinyl pyrrolidone, poly(4-vinylpyridine), poly(methacrylic 

acid), etc., or the chemical modification of a hydrophobic polymer 

matrix with polar or ionic groups such as amine, nitro, sulfonic, 

acetyl, and carboxyl groups (Andrade-Eiroa et al., 2016; 

Bratkowska et al., 2010; Buszewski and Szultka, 2012). Due to their 

chemical diversity, high stability, wide range of supported working 

conditions, high efficiency and capability, polymeric sorbents have 

been used extensively for the extraction of a large number of EOPs 

with different physicochemical properties, as a pretreatment step in 
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monitoring programs focused on pharmaceuticals (Huang et al., 

2017; Wang et al., 2020c), flame retardants and industrial additives 

(Kaziur-Cegla et al., 2020; Zhong et al., 2019), polyaromatic 

hydrocarbons (Thomsen et al., 2007), pesticides (Corcellas et al., 

2013), among others (Płotka-Wasylka et al., 2017).  

In this same sense, molecularly imprinted polymers, or MIPs, have 

arisen in recent years as an important alternative in SPE through 

which high extraction selectivity can be achieved, keeping the 

above-mentioned advantages provided by polymeric structures 

(Beltran et al., 2010a). The high selectivity of MIPs sorbents is 

provided by the specific cavities in their structures, which allows 

the retention of molecules with a particular shape and the capability 

of interaction with the chemical groups of the sorbent’s surface, 

whereas the other compounds can pass through them without any 

significant retention. Besides, as many other types of polymers, 

MIPs can be obtained in a relatively simple way and processed in 

different arrangements, obtaining suitable devices for the extraction 

and monitoring of specific pollutants from/in water samples 

(Bhogal et al., 2021; Dong et al., 2021b). For example, MIPs 

sorbents have been used for the extraction of emerging 

aminoglycosides antibiotics (Zhang et al., 2020b), bisphenol A 

(Karrat and Amine, 2021), diclofenac (Cantarella et al., 2019), 

ketoprofen (Zunngu et al., 2017), parabens (Beltran et al., 2010b), 

clofibric acid (Duan et al., 2013), atrazine (Zarejousheghani et al., 

2014), among other EOPs (Liu et al., 2021; Wang et al., 2019c). 

Currently, there is a need for advancing in the development of SPE 

sorbents with more efficiency, capability, and even versatility, such 

that, it has turned the attention to the consideration of other types of 

promising materials. For example, carbon-based (nano)materials 

such as carbon nanotubes, fullerenes, graphene, and graphene oxide, 

which have excellent properties like high specific surface areas, 

high mechanical strength, and thermal conductivity (Arcoleo et al., 

2020; Muñoz et al., 2004; Ruiz et al., 2019). In addition, they can 

participate actively in redox processes, which allows them to be 

highly used in electrochemical SPE techniques (Hatamluyi and 

Es'haghi, 2017; Shamsayei et al., 2016). Likewise, there is a 

tendency for using organic-inorganic hybrid materials, such as 

metal-organic frameworks, which have a nanostructured network 

useful to pollutant removal, high specific surface area, and good 

thermal and chemical stability (Composite materials, e.g., 

polymers-graphene oxide, polymers-organic frameworks, among 

others, are also of emerging interest (Gao et al., 2021; Liu et al., 

2018). Undoubtedly, bio-derived materials are a current research 

topic in materials science and analytical chemistry, since they 

represent an environmentally-friendly solution to the employment 

of petroleum-derived materials. Thus, for example, some 

researchers have employed chitosan, agarose, alginate, and 

cellulose as SPE sorbents, obtaining positive results in terms of 

extraction efficiency (Pacheco-Fernández et al., 2020). 

Through time, different SPE techniques and modifications of the 

classic SPE have been proposed with the aim to satisfy or 

accomplish various requirements or drawbacks in terms of 

extraction methodologies like sample matrix, equipment, recovery, 

selectivity, efficiency, etc. Among the most relevant are dispersive 

solid-phase extraction (DSPE) and stir-bar sorptive extraction 

(SBSE) (Faraji et al., 2019). For its part, DSPE involves the 

dispersion of a SPE sorbent into a liquid sample, without the 

employment of any sophisticated setup. After the extraction process 

is completed, the sorbent is recovered from the solution using 

centrifugation and/or filtration. The main advantage of DSPE over 

other extraction techniques is the reduction of extraction time that 

allows more samples to be analyzed in shorter periods of time. Also, 

DSPE results to be cheap, simple, rugged, and safe (Islas et al., 

2017). However, its main drawback is the impossibility to change 

solvent between the extraction and preconcentration steps and, as in 

other SPE methodologies, it is necessary to select a proper sorbent 

to extract the targeted compounds (Chisvert et al., 2019; Walorczyk 

et al., 2015). Although this, DSPE have been used for extracting 

different EOPs, such as estrogens, steroids, β-blockers, industrial 

additives, acidic pharmaceuticals, antidepressant drugs, and 

antibiotics (Celano et al., 2014; Gao et al., 2019; Sajid et al., 2021; 

Wang et al., 2016). 

On the other hand, SBSE employs a glass magnetic stirrer (typically, 

1.5 cm long) coated with polydimethylsiloxane for extracting apolar 

EOPs from aqueous samples by their stirring for a determined 

period of time. The extraction process is mediated by a partition 

equilibrium of the pollutants between the aqueous phase and the 

polydimethylsiloxane coating. After completing extraction, 

processes like thermal desorption or liquid desorption can be 

utilized for the recovery of the pollutants (Zheng et al., 2020). SBSE 

has important characteristics such as the possibility of employing 

low volumes of sample, simplicity, fast extraction, and high 

efficiency (Camino-Sánchez et al., 2014). Thus, it has been used for 

extracting polycyclic aromatic hydrocarbons, polychlorinated 

biphenyls, pesticides, hormones, pharmaceuticals, and personal care 

products (Bratkowska et al., 2011; Murrell and Dorman, 2021; 

Pintado-Herrera et al., 2014). However, the utilization of a 

polydimethylsiloxane coating as the extraction phase limits the 

recovery of EOPs to apolar compounds. In this sense, some 

alternative polar extraction phases have been postulated, but they 

have not been sufficiently accepted because they are mostly not 

compatible with pollutant recovery methodologies and/or have 

inferior performance characteristics compared to polydimethyl-

siloxane (Gilart et al., 2014; Ochiai et al., 2018). Until now, SPE 

techniques are an active research topic, such that innovative setups, 

configurations, modifications or derived techniques are constantly 

postulated (Benedé et al., 2018; Gamonchuang and Burakham, 

2021). 

 

4.2.2.1. Solid-phase microextraction (SPME) techniques 
 

As in the case of LLE techniques, SPE has also been developed at 

microlevel, which involves the usage of low volumes of sample and 

extracting solid phase (in the order of 𝜇L), and results in a simple, 

cheap, versatile, and easy-to-automate extraction technique 

(Spietelun et al., 2013). As in SPE, SPME techniques utilize a solid 

sorbent to extract pollutants, usually made from fused silica fibers 

coated with a polymer layer. This polymer layer serves as an 

adsorbent and, depending on its properties, it is used to extract 

analytes with particular physicochemical properties (Riboni et al., 
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2021). Additionally, SPME techniques are varied in the shape of 

support, configurations and operation modes. For example, SPME 

can be classified as static or dynamic. Static SPME techniques, such 

as thin-film SPME, fiber SPME, and rotating disk sorptive 

microextraction, carry out the extraction process using a constant 

stirring until it is completed. On the other hand, in dynamic SPME 

techniques, such as in-tube SPME, in-tip SPME, in-needle SPME, 

and capillary SPME, the extraction process is carried out by the 

dynamic elution of the sample through the solid sorbent (Portillo-

Castillo et al., 2018; Vas and Vékey, 2004). Also, depending on 

their modes of extraction, SPME techniques can be divided into 

headspace SPME, direct-immersion SPME, and membrane-

protected SPME (Zacharis and Tzanavaras, 2020). Likewise, 

techniques like DSPE and SBSE have also been developed to work 

at low volumes of sample and sorbents (Benedé et al., 2018; 

Senovieski et al., 2020). Thus, SPME has been established as an 

effective and reliable extraction methodology, satisfying important 

characteristics like eco-friendly operation, low costs, and high 

efficiencies, which result in essential advantages over other 

pollutant extraction methods, such that, SPME is one of the most 

used extraction techniques currently. Among its applications, the 

extraction of pharmaceuticals, pesticides, personal care products, 

among other EOPs, from water samples are highlighted (da Silva 

Sousa et al., 2021; González-Hernández et al., 2021; Kraševec and 

Prosen, 2021; Naccarato et al., 2021; Zhang et al., 2017). Some 

drawbacks of SPME include the limited effectiveness of already-

developed sorbents and the facility to desorb the targeted 

compounds once their extraction has been completed (Dimpe and 

Nomngongo, 2016; Spietelun et al., 2013). However, great progress 

has been achieved in this topic through the employment of 

microwaves and ultrasound to increase the extraction and 

desorption rates/effectivities (Albero et al., 2018; Naccarato et al., 

2021; Zhang et al., 2017), as well as the development of more 

effective adsorbents, including versatile and functional 

nanomaterials (Feng et al., 2021; Jagirani and Soylak, 2020; Riboni 

et al., 2021). 

 

4.3. Analytical techniques for EOPs detection and 
monitoring in water samples 
 

After carrying out a proper sampling and the respective sample 

pretreatment, it is time to detect and quantify the targeted EOPs. As 

mentioned earlier, it is not possible to develop a single analytical 

method that ensures the detection and quantification of all reported 

EOPs in a single sample. In this sense, it is necessary to utilize 

different analytical and spectrometric techniques for, first, 

separating the EOPs in the sample and, then, detecting and 

quantifying them. For this, chromatography techniques, such as 

high-performance liquid chromatography (HPLC) or its variant 

ultra-high performance liquid chromatography (UHPLC), and gas 

chromatography (GC), are implemented (Borrull et al., 2020; 

Riboni et al., 2020). These can have ultraviolet-visible (UV-Vis), 

fluorescence, or diode-array detectors, but also, they can be coupled 

to mass spectrometry (MS), which has the capability (and the 

advantage over other detectors) to measure EOPs even at trace 

concentrations (Comtois-Marotte et al., 2017). However, a few 

alternatives, but less implemented, techniques have been utilized 

recently to detect and quantify EOPs, e.g., Raman spectroscopy and 

Fourier transform infrared (FTIR) spectroscopy. Table 2 illustrates 

summarized protocols and techniques employed in some relevant 

and recent works focused on EOPs detection and monitoring in 

water environments. Next, each methodology will be discussed in a 

deeper way.

 
Table 2. Some relevant detection and monitoring protocols of EOPs in water environments.  
 

Type of 
sampling 

Extraction and 
preconcentration 

technique 

Instrumental 
analysis 

Measured EOPs Type of water sample Reference 

GS - UHPLC/MS-MS Illicit drugs (cocaine, amphetamine, 
methamphetamine, etc.), pharmaceuticals 
(lincomycin, trimethoprim, sulfamethoxazole, 
ketoprofen, etc.), and caffeine 

Wastewater Di Marcantonio 
et al. (2021) 

GS SPE HPLC/MS-MS Pharmaceuticals (sulphonamides, tetracyclines, 
fluoroquinolones, β-blockers, anti-inflammatory 
drugs, and amphenicols) 

Surface water Kazakova et al. 
(2021) 

GS SPE UHPLC/MS-MS Chiral pharmaceuticals (atenolol, propanolol, 
metoprolol, venlafaxine, fluoxetine, O-
desmethylvenlafaxine, among others) 

Surface water Ma et al. (2020a) 

PS - UHPLC/MS (Q-ToF) Pesticides (atrazine, diuron, carbendazim, 
hexazinone, dichlorobenzamide, among others) 
and pharmaceuticals (diclofenac, 
carbamazepine, sulfamethoxazole, lidocaine, 

Groundwater and 
stormwater runoff 

Pinasseau et al. 
(2019) 
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among others) 

GS SPE LC/MS Pharmaceuticals and illicit drugs (cocaine, 
amphetamine, fluoxetine, citalopram, 
mephedrone, ketamine, methylone, etc.) 

Drinking water Peng et al. 
(2019) 

GS SPE GS/MS and 
HPLC/MS 

A wide array of EOPs: pharmaceutical 
compounds (carbamazepine, ibuprofen, 
diclofenac, hydrochlorothiazide, trimethoprim, 
etc.), personal care compounds (triclosan, 
triclocarban, celestolide, galaxolide, tonalide, 
etc.), and organophosphate flame retardants and 
plasticizers (tri(n-butyl) phosphate and triphenyl 
phosphate) 

Groundwater and surface 
water 

Llamas-Dios et 
al. (2021) 

GS SPE UHPLC/MS Different EOPs, including pesticides, 
pharmaceuticals, natural substances, personal 
care products, industrial chemicals and 
additives, hormones, etc. 

Wastewater Qian et al. (2021) 

GS + CS SPE UHPLC/MS-MS More than 50 EOPs, including antibiotics, 
biocides, anti-inflammatory/analgesic drugs, 
antiepileptic drugs, lipid regulators, and caffeine. 

Wastewater Yang et al. 
(2017b) 

GS SPME UHPLC/MS-MS and 
GS/MS 

Biocides (dibenzofuran, diazinone, metolachlor, 
octicizer, etc.), personal care compounds 
(oxybenzone, galaxolide, avobenzone, 
octinoxate, etc.), pharmaceuticals (benzyl 
benzoate, doconexent, phenylephrine, etc.), 
industrial additives and chemicals (diethylene 
glycol dibenzoate, diisooctyl phthalate, 4-tert-
octylphenol, styrene, caprolactam, etc.) among 
others. 

Surface water Wooding et al. 
(2017) 

GS SPME GC/MS Some UV-filters and polycyclic musk compounds 
(octocrylene, caffeine, benzophenone-3, 
ethylhexyl methoxycinnamate, among others) 

Wastewater and surface 
water 

Moeder et al. 
(2010) 

GS SPE HPLC/MS A few pharmaceutical and personal care 
compounds (acetaminophen, cotinine, 
fluoxetine, norgestrel, diethylstilbestrol, 
progesterone, etc.) 

Wastewater Hedgespeth et 
al. (2012) 

PS - UHPLC/MS Pesticides (acetamiprid, atrazine, ancymidol, 
azoxystrobin, bromacil, carbofuran, diazinon, 
fipronil, etc.) 

Surface water Taylor et al. 
(2021) 

GS - UHPLC/MS Pesticides and their transformation products 
(atrazine, metolachlor oxanilic acid, metolachlor 
sulfonic acid, chloridazon, desphenyl 
chloridazon, among others) 

Surface water Warner et al. 
(2021) 

CS SPE UHPLC/MS-MS Illicit drugs and their metabolites 
(methamphetamine, amphetamine, morphine, 
codeine, 6-monoacetylmorphine, 
benzoylecgonine, cocaine, ketamine, etc.) 

Wastewater Wang, et al. 
(2021) 

CS SPE LC/MS-MS Illicit drugs (amphetamine, methamphetamine, 
3,4-methylenedioxymethamphetamine, cocaine, 
and cannabis) 

Wastewater Mercan et al. 
(2019) 
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CS SPE LC/MS-MS Illicit drugs and their metabolites (cocaine, 
amphetamine, ephedrine, diazepam, alprazolam, 
LSD, morphine, etc.) 

Wastewater Mastroianni et al. 
(2017) 

CS SPE HPLC Industrial additives (ditertbutylphenol, irganox 
1010, irganox 1076, ethanox 330 and cyanox 
1790) 

Wastewater Hernández-
Fernandez and 
Rodríguez 
(2019) 

GS SPE HPLC/MS-MS Biocides and their metabolites (carbendazim, 
diuron, diuron-desmonomethyl iodocarb, 
dichloro-isothiazolinone, etc.) 

Run-off water Bester and 
Lamani (2010) 

GS SPE LC/MS A high quantity of EOPs, including biocides, 
pharmaceuticals, personal care compounds, 
industrial additives and chemicals, and even 
unregistered EOPs. 

Groundwater Ter Laak et al. 
(2012) 

GS - HPLC and FTIR Some representative pharmaceuticals and 
pesticides (desloratadine, paracetamol, 
ibuprofen, β-estradiol, ethynylestradiol, 
carbamazepine, sulfamethoxazole and atrazine) 

Wastewater Quintelas et al. 
(2020) 

GS SPE GC/MS-MS Bisphenol A, bisphenol F, and their respective 
glycidyl ethers 

Tap water, surface water, 
and snow water 

Jiao et al. (2012) 

PS - GC/MS Alkylphenols (phenol, 2-ethylphenol, 2-
isopropylphenol, 2-phenylphenol, octylphenol, 
nonylphenol, among others) 

Produced water* Silvani et al. 
(2017) 

GS LLE GC/MS Water disinfection by-products, including 
trihalomethanes, haloacetic acids, halogenated 
aromatic hydrocarbons, among others. 

Drinking water and surface 
water 

Vozhdaeva et al. 
(2021) 

GS SPE GC and HPLC/MS Water disinfection by-products (chlorinated 
hydrocarbons, brominated hydrocarbons, 
halogenated aromatic hydrocarbons and their 
derivatives) 

Surface water Li et al. (2022) 

GS LLE and SPE GCxGC/MS A multitude of volatile EOPs (halogenated 
hydrocarbons, aromatic hydrocarbons, 
polychlorinated biphenyls, among others) 

Wastewater Murrell and 
Dorman (2021) 

GS LLE UHPLC/MS-MS Different EOPs, including pesticides, 
pharmaceuticals, personal care compounds, and 
industrial chemicals. 

Wastewater and surface 
water 

Salvatierra-
stamp et al. 
(2018) 

GS - HPLC Biological toxins (saxitoxins, gonyautoxins, C-
toxins, among others) 

Surface water Clemente et al. 
(2010) 

GS - UHPLC/MS-MS Cyanotoxins (anatoxin-A, homo-anatoxin, 
cylindrospermopsin, nodularin, and microcystins) 

Drinking water and surface 
water 

Pekar et al. 
(2016) 

GS - Raman 
spectroscopy 

Carbon nanomaterials (graphene oxide) Surface water Yang et al. 
(2020) 

CS LLE LC/MS Carbon nanomaterials (fullerenes: C60 and C70) Wastewater Farré et al. 
(2010) 

GS: Grab sampling; PS: Passive sampling; CS: Composite sampling; LC: Liquid chromatography. *It refers to the water utilized in oil exploration and gas industry, including 
both formation water and injected water (Silvani et al., 2017). 
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4.3.1. Gas chromatography 
 

GC is one of the most used analytical methods to separate and detect 

EOPs in water environments (see Table 2). In this technique, 30 m- 

and 60 m-length capillary columns with a diameter between 0.1 to 

0.5 µm and solid sorbents made from alumina, fused silica, or 

molecular sieves, are employed. Depending on their configuration, 

GC columns can be classified as porous layer open tubular (PLOT), 

support coated open tubular (SCOT), and wall coated open tubular 

column (WCOT), being this the most used due to its efficiency, 

speed, and higher resolution (Llamas-Dios et al., 2021; Rahman et 

al., 2015; Van Gansbeke et al., 2015). According to its operation, 

GC is limited to the separation and quantification of non-polar, 

volatile and thermally stable EOPs, e.g., aromatic hydrocarbons, 

aliphatic hydrocarbons, and their halogenated derivatives. However, 

different derivatization methodologies have been designed to enable 

the quantification of polar EOPs, such as pharmaceuticals, 

pesticides, personal care products, among others, through GC. In 

this sense and, as mentioned in section 4.2.1, these processes 

involve chemical reactions using various derivatizing agents to 

obtain compounds with a more apolar and volatile nature. Although 

this improves separation, sensitivity, selectivity, and the capability 

of the technique, it also represents a disadvantage, since 

derivatization can be complicated or tedious, time-consuming, 

uncompleted, or cause degradation of some analytes. Additionally, 

it is usually a non-eco-friendly process (Bowden et al., 2009; Ji et 

al., 2020). Finally, different detectors are used in GC analysis, for 

example, flame ionization detector (FID), electron capture detector 

(ECD), and, of course, MS, which is the most used due to its 

sensitivity and low detection limits (Benedé et al., 2014; Ratola et 

al., 2006).  

In this sense, a multitude of works focused on EOPs monitoring in 

water environments using GC have been published through time. 

Some of them utilized GC with FID or ECD as a simple, 

inexpensive, fast, and efficient analytical methodology for EOPs 

determination in aqueous samples, e.g., pesticides and water 

disinfection by-products, reporting detection limits at µg/L level (Li 

et al., 2022; Ratola et al., 2006; Zhang et al., 2008). However, when 

lower detection limits are required, MS is the proper detector, as will 

be discussed in a next section. For this reason, almost all of the 

published works focused on analytical determination of EOPs 

employing GC are based on GC/MS and GC/MS-MS couplings. 

Through these, industrial additives, pesticides, alkylphenols, 

polycyclic aromatic hydrocarbons, pharmaceuticals, and water 

disinfection by-products have been determined in water samples at 

ng/L and pg/L level (Arcoleo et al., 2021; Glineur et al., 2021; Jiao 

et al., 2012; Silvani et al., 2017; Vozhdaeva et al., 2021). Also, two-

dimensional GC (GCxGC) coupled with MS have utilized to 

determine EOPs in water environments. This technique utilizes two 

orthogonally aligned capillary columns, both with different 

stationary phases, which enhance notably the chromatographic 

resolution and, in this sense, it results to be a suitable analytical 

technique when dealing with complex mixtures and matrices 

(Castillo Meza et al., 2020; Murrell and Dorman, 2021). Using 

GCxGC/MS, it has been possible to determine different EOPs in 

aqueous samples, such as polycyclic aromatic hydrocarbons, 

phenols, phthalate esters, parabens, hormones, anti-inflammatory 

drugs, pesticides and phenolic industrial additives (Arismendi et al., 

2019; Murrell and Dorman, 2021; Prebihalo et al., 2015).  

Currently, GC is positioned as a good alternative to quantify EOPs 

in a diversity of aqueous environments. However, due to the 

already-mentioned drawbacks of this technique, it is less 

implemented than LC for EOPs determination in water samples, 

also, taking into account that the majority of water EOPs are polar 

and non-volatile compounds (Borrull et al., 2020; Pinos Vélez et al., 

2019). This was easily corroborated by the proportion of the articles, 

using GC and LC for determining EOPs in water, indexed in Scopus 

(from 2000 to present) (Scopus, 2021). Approximately, for each 

article that implemented GC as the analytical technique for EOPs 

quantification in water samples, there are three articles that 

implemented LC as the analytical technique, i.e., GC is 

implemented in 25 % of the cases. 

 

4.3.2. Liquid chromatography 
 

Among LC techniques, HPLC and UHPLC are the most 

implemented for EOPs determination in water environments (see 

Table 2). UHPLC, in comparison with HPLC, provides a higher 

efficiency and peak capacity through the reduction in particle size 

(less than 2 µm) (Celano et al., 2014). Usually, both LC techniques 

utilized C8 and C18 hydrocarbons bind to a solid fused silica support 

as the stationary phase. Among these, C18 column offers more 

robustness, since it allows in a higher degree the determination of 

both polar and non-polar EOPs in the same aqueous sample (Pekar 

et al., 2016; Salvatierra-Stamp et al., 2015). In terms of mobile 

phase, mixtures of water with an organic solvent, e.g., methanol or 

acetonitrile, are generally used. Also, some additives can be used, 

such as organic acids (formic or acetic acid) or organic salts 

(ammonium acetate or ammonium formate), which improve in some 

way the separation process or the chromatographic signals. In LC, 

the polarity of the mobile phase can be changed throughout the 

analysis by programming a solvent gradient, i.e., changing the ratio 

of the employed solvents in a controlled way, such that the 

separation of polar and non-polar EOPs are enhanced (Mirasole et 

al., 2016). Additionally, due to its versatile and efficient operation, 

LC generally do not require derivatization methods, resulting to be 

a simpler separation technique with high capability for the 

determination of EOPs with different physicochemical 

characteristics, e.g., polarity, acidity, molecular weight, etc., and 

functional groups, e.g., hydroxyl, amine, carboxylic acid, thiol, 

among others (Peng et al., 2019). 

According to the above, LC has been implemented extensively for 

detecting and quantifying EOPs in environmental aqueous matrices. 

For example, Qian and co-workers recently (2021) implemented 

SPE and UHPLC coupled with MS for investigating the presence of 

different EOPs in water samples of various Chinese full-scale 

wastewater treatment plants. The chromatography technique 

comprised the utilization of a C18 column, a mobile-phase gradient 

elution implementing 2 mM ammonium acetate and methanol as the 

solvents, and a high-resolution orbitrap mass spectrometer as the 
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detector. This allowed them to determine and screen out 568 organic 

substances present in those samples, among which 167 

pharmaceuticals, 85 pesticides, 86 endogenous substances, 64 

industrial chemicals, 14 personal care products, 17 industrial 

additives, and 6 hormones were identified at low µg/L level. 

Between samples, pesticides and pharmaceutical compounds were 

highlighted as the most prevalent EOPs and, in addition, a 

correlation between of the levels of anti-hypertension drugs 

(metoprolol and irbesartan) and hypertension prevalence in China 

was found. In a similar way, Wang et al. (2021a) implemented an 

analytical methodology based on a novel and fast on-line SPE-

UHPLC-MS/MS for simultaneously quantifying 12 illicit drugs and 

their metabolites in wastewater, including methamphetamine, 

amphetamine, morphine, codeine, cocaine, ketamine, norketamine, 

and methcathinone at ng/L level. As in the previous work, the 

authors implemented a C18 column and a mobile-phase gradient 

elution with methanol, acetonitrile, and an aqueous acetic acid 

solution as the solvents. Other works focused on the determination 

of illicit drugs in water samples using UHPLC have also been 

published recently (Di Marcantonio et al., 2021; Mercan et al., 

2019).  

Although pharmaceuticals, pesticides, and illicit drugs can be 

considered as important pollutants extensively determined in water 

environments (Quintelas et al., 2020), other kinds of EOPs have also 

been the focus of many monitoring works, for example, personal 

care compounds, industrial additives, biological toxins, and even 

nanomaterials (Clemente et al., 2010; Farré et al., 2010; Pekar et al., 

2016; Salvatierra-stamp et al., 2018; Wang et al., 2010). This has 

not only been carried out using LC/MS couplings, but also utilizing 

LC with diode array detector (Hernández-Fernandez and Rodríguez, 

2019), fluorescence detector (Clemente et al., 2010; Speltini et al., 

2015), and UV-vis detector (Fatoki et al., 2018). These detectors 

provide a good analytical response and sensitivity at µg/L and even 

ng/L concentrations. However, they are limited in sensitivity when 

it is necessary to measure lower levels of EOPs (pg/L and below) 

and, as in the case of fluorescence and UV-vis detectors, to the 

requirement of a light absorption process by the targeted organic 

pollutant(s), which is not possible in many cases (Garcia-Alonso 

and Perez-Pastor, 2019).  

 

4.3.3. Mass spectrometry 
 

As mentioned in previous sections, MS is the most implemented 

detector in EOPs-determining protocols because of its sensitivity, 

simplicity, capability to identify both known and unknown EOPs in 

complex matrices, and its easy, well developed, and effective 

coupling with LC and GC (Li et al., 2022). In its operation, first it 

is necessary to generate gaseous ions from the sample molecules. 

To do this, an ionization source that works properly on 

chromatographic couplings is utilized, for example, electrospray 

ionization or ESI. Most of the works for the analysis of EOPs in 

water samples are carried out implementing ESI in either positive 

or negative ionization modes (Jones-Lepp et al., 2012). 

Furthermore, other ionization techniques, such as atmospheric 

pressure chemical ionization, have also been used for EOPs analysis 

in water (Niu et al., 2020; Portolés et al., 2014).  

Once gaseous ions are formed in mass spectrometers, they need to 

be separated and analyzed according to their mass-to-charge (m/z) 

ratio. For this, different analyzer with different separation power (or 

resolution) are implemented: magnetic sector, electrostatic sector, 

single quadrupole, time-of-flight (TOF), ion trap, Orbitrap, and 

Fourier transform ion cyclotron resonance (FTICR). Table 3 shows 

the main characteristics of different MS analyzers. Among these, 

FTICR provides the highest resolution, but with a higher cost 

associated with its operation (Menger et al., 2020). For this, 

quadrupole, ToF, and Orbitrap analyzers are also well implemented 

(Hedgespeth et al., 2012; Murrell and Dorman, 2021; Silvani et al., 

2017). Another alternative is the coupling of two or more analyzer 

to improve notably the separation power, e.g., triple quadrupole and 

quadrupole-TOF (with single or multiple quadrupole), resulting in 

the so-called tandem MS (MS/MS). By this methodology, it is 

possible to analyze a specific group of EOPs with a specific range 

of m/z values through either, the entrapment of primary gaseous 

ions and its further fragmentation(s), or the time-dependent 

modification of the analyzed m/z values. This allows for a more 

detailed and accurate analysis even in complex matrices (Jiao et al. 

2012; Salvatierra-stamp et al., 2018).  

 

4.3.4. Other analytical techniques 
 

Currently, most of the works focused on the determination and 

screening of EOPs use chromatographic techniques as the 

separation methodology and MS as the detector by excellence. 

However, in order to overcome some drawbacks associated with 

those techniques, such as expensive instruments, sample 

destruction, employment of toxic organic solvents, and non-

portability, alternative techniques have been utilized for the same 

purpose, for example, Raman spectroscopy, FTIR spectroscopy, and 

emission photoinduced fluorescence.  

 

 
Table 3. The characteristic of the most implemented MS analyzers in EOPs determination protocols (adapted from Liu et al., 2014). 
 

Mass analyzer Separation by Typical resolution* Mass accuracy 

Quadrupole Trajectory stability 2,000 100 ppm 
Ion trap Frequency 4,000 100 ppm 

TOF Flight time 10,000 10 ppm (using reflection) 

Orbitrap Frequency 100,000 < 5 ppm 

FTICR Frequency 105-106 < 5 ppm 
*It is commonly defined as the ability to separate ions according to their m/z value (generally, z is one). It is calculated as m/Δm, where m is the nominal mass (actually m/z) for a particular peak 
in the mass spectrum, and Δm is peak width at 10 or 50 % of the peak height. 

http://www.jsta.cl/


An approximation to mechanics and mass transport in polymer-based hydrogel systems|112 

 

 

Otálora A., et al., J. Sci. Technol. Appl. 10 (2021) 92-153. DOI: 10.34294/j.jsta.21.10.68 

ISSN: 0719-8647 | Available: www.jsta.cl    

 

As a first example, Quintelas and co-workers (2020) recently 

reported the development of a FTIR transmission spectroscopy 

based chemometric methodology for the determination of eight 

EOPs (paracetamol, desloratadine, ibuprofen, β-estradiol, 

ethynylestradiol, carbamazepine, sulfamethoxazole, and atrazine) in 

wastewater. The methodology involved a sample scanning by FTIR 

and the recording of the obtained spectra. Then, a chemometric 

analysis was performed using sequentially a k-nearest neighbor 

(kNN) analysis to identify each sample pollutant; a preprocessing of 

the obtained spectra information by means of standard normal 

variate (SNV), multiplicative scatter correction (MSC), and first and 

second order derivatization; and, finally, a partial least squares 

(PLS) analysis in order to obtain suitable prediction models. This 

way, it was possible to obtain good results regarding the estimation 

of the targeted EOPs in wastewater at low mg/L level, resulting in a 

simple and eco-friendly protocol to measure EOPs. Importantly, 

some advances have been achieved in the pollutant’s detection by 

FTIR through the implementation of glass optical fibers, which 

allow on-site, real-time monitoring of EOPs (Michel et al., 2004). 

More sophisticated systems have been developed using a fiber-type 

design coated with a polymeric membrane for simultaneously 

extracting and quantifying EOPs in water. This type of sensors 

exhibited high sensitivities and provided rapid analysis for the 

detection of chlorinated aliphatic hydrocarbons even at 

concentrations from 5 ppb; thus, it was proposed as a promising 

alternative technique for water contamination monitoring (Lu et al., 

2013). 

A relatively similar technique to FTIR, Raman spectroscopy, has 

also been implemented for the monitoring of EOPs in environment. 

For example, due to the large-scale production of graphene oxide 

(GO) and its reported toxicity to living organisms, Yang et al. 

(2020) were interested in the utilization of Raman spectroscopy for 

GO determination in water samples, since other techniques do not 

properly achieve this. In this approach, they performed a 

derivatization methodology using hydrazine (N2H4) with the aim of 

diminishing fluorescence interference by GO, a common problem 

when dealing with GO determination. Then, they quantified, in a 

simple and fast way, GO present in aqueous samples by means of 

the GO’s G and D bands observed in their Raman spectra, obtaining 

a good linearity in a concentration range of 0.001 to 0.6 mg/L and 

achieving the distinction of GO from other carbon nanomaterials in 

the same samples. In a similar way, Raman spectroscopy has been 

used successfully for microplastic monitoring in water 

environments (Lê et al., 2021). 

On the other hand, an eco-friendly strategy based on 

photochemically induced fluorescence for the determination of 

some pharmaceuticals (carbamazepine, ofloxacin, and piroxicam) 

in water samples was proposed in 2015 by Hurtado-Sánchez and 

collaborators. In this methodology, only a sample pretreatment by 

means of SPE, without any further chromatographic analysis, was 

done. After that, the preconcentrated aqueous samples were 

analyzed by induced-fluorescence measurements. Through this 

technique, it was possible to detect the targeted pharmaceuticals 

even at a concentration of 0.04 ng/L, resulting to be a simpler and 

greener technique than LC/MS for the determination of this kind of 

EOPs. However, limitations regarding to the structure of the 

pollutants, i.e., it need to have at least a chromophore fragment still 

remain.  

 

5. Removal techniques of emerging water pollutants 
 

After considering detection and monitoring methodologies for 

EOPs in water environments, it is turn to review the different 

technologies implemented on EOPs removal from this medium. 

Generally, these are divided into conventional methodologies, 

which comprise well established techniques implemented at low 

and large scale for removing both dissolved and non-dissolved 

pollutants, e.g., sedimentation, coagulation-flocculation, activated 

sludge, filtration, etc.; and non-conventional methodologies, which 

comprise recently developed, more sophisticated and highly 

efficient technologies implemented as an alternative for EOPs 

removal. 

 

5.1. Conventional water treatment 
 

Conventional water treatment is focused on the removal of solids, 

organic matter, microorganisms, and some dissolved compounds 

(e.g., salts, nutrients, etc.) from polluted water. Generally, this is 

performed at low, medium and large scales in wastewater treatment 

plants (WWTPs) by means of the implementation of different 

decontamination techniques in various well-designed steps, which 

are classified as primary (or mechanical), secondary (or biological), 

and tertiary (or chemical). Primary treatment steps involve the 

removal of suspended solids and colloidal particles through 

sedimentation, coagulation-flocculation, and/or air flotation 

processes, producing high quantities of sludge. In this step, grease 

and oils can also be skimmed off. Subsequently, in secondary 

treatment steps, microorganisms and dissolved organic and 

inorganic compounds are intended to be removed using trickling 

filters and/or activated sludge processes. These processes utilize the 

action of microorganisms to degrade the soluble organic pollutants. 

Finally, tertiary treatment steps aim to increase the quality of the 

treated water by the killing/removal, in a higher degree, of 

microorganisms and organic dissolved pollutants employing 

disinfection/oxidation methodologies, e.g., ozonation, chlorination/ 

bromination, and UV irradiation (Kerasi et al., 2021; Turan et al., 

2021). 

In this sense, EOPs are subjected to different physicochemical 

processes, such as sorption, dispersion, dilution, photodegradation, 

and biodegradation, throughout a completed conventional water 

treatment. However, due to the complexity on structure and 

behavior of EOPs and their relatively low concentrations in water 

environments, in conjunction with the particular operating mode of 

each employed technique, the resulting removal efficiencies varies 

greatly for each treatment step and each organic pollutant (Ferreiro 

et al., 2020). For example, it has been demonstrated that the removal 

efficiency of dissolved EOPs in primary treatment steps varies in 

the range of 20 to 50 %, whereas secondary treatment steps can be 

achieved efficiencies between 30 to 70 % (Cristaldi et al., 2020; 

Khasawneh and Palaniandy, 2021; Quach-Cu et al., 2018). In 
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addition, the inclusion of a tertiary treatment step, which is not 

always implemented in conventional water treatments, enhances the 

total removal efficiency towards some dissolved EOPs (80 % or 

more), but a great quantity of them usually remains in effluents (Di 

Marcantonio et al., 2020; Mailler et al., 2016a). In the case of 

undissolved EOPs, such as microplatics, these treatments can be 

more effective, reaching removal efficiencies higher than 90 %, 

even utilizing only primary and secondary treatment steps. Some 

particular examples of the aforementioned are reported in Table 4. 

Interestingly, negative efficiencies have also been reported for some 

EOPs. These have been explained in terms of the variation of 

environmental temperature, the partition equilibria of each 

pollutant, and the degradation of parent chemicals and conjugates 

excreted by human bodies, for example, which led to the release of 

more pollutant molecules during the treatment (Golovko et al., 

2021). This way, different pharmaceutical, pesticides, personal care 

compounds, and industrial chemicals have been found in effluent 

waters and sludge even at concentrations of mg/L and mg/g, 

respectively (Bijlsma et al., 2021; Firouzsalari et al., 2019; 

Khasawneh and Palaniandy, 2021; Wang et al., 2020d).  

Based on many studies focused on the efficiency of different 

WWTPs for removing EOPs, authors generally agree that 

conventional wastewater treatment systems do not achieve it 

properly and, until now, there is the need for developing more 

advanced and versatile technologies that ensure higher removal 

capabilities. Among these emerging techniques, membrane-based 

separation systems, effective sorbents, advanced oxidation 

reactions, and sophisticated biological treatment will be discussed. 

 

5.2. Non-conventional methodologies 
 

Currently, non-conventional methodologies are an important 

research topic on water treatment systems, such that they continue 

to be developed and investigated, achieving a few advances in their 

establishment at medium and large scale until now. Here, it is 

important to take into account that these techniques are not a full 

replacement for conventional water treatment methodologies. First, 

the majority, if not all, of non-conventional treatment techniques 

need to be coupled with preliminary water treatment steps in order 

to eliminate either potential physical and chemical interferences or 

treatment-inactivating species. Second, they seek to improve the 

effectiveness on EOPs removal by means of different physico-

chemical or biological mechanisms after the implementation of 

conventional treatment in almost all cases (Tak and Vellanki, 2019).  

 
Table 4. Some relevant studies of EOPs removal by conventional water treatment employed in different WWTPs. 
 

Location Number of 
evaluated WWTPs 

Treatment 
steps* 

Targeted EOPs (Average efficiency [%]) Reference 

China 16 Primary + 
Secondary + 
Tertiary 

Hormones (~40), personal care products (~45), food additives 
(~30), pharmaceuticals (~25), pesticides (~10), natural substances 
(~45), others (~30).  

Qian et al. (2021) 

Italy 76 Primary + 
Secondary + 
Tertiary 

Benzoylecgonine (~100), 11-nor-carboxy-Δ9-tetrahydrocannabinol 
(~75), ketoprofen (~90), sulfamethoxazole (~40), carbamazepine 
(10 or less), trimethoprim (~60), lincomycin (~0), estrone and a few 
related hormones (more than 50). 

Di Marcantonio et al. (2020) 

Sweden 15 Primary + 
Secondary + 
Tertiary 

164 EOPs, including pharmaceuticals, personal care products, 
industrial chemicals, per- and polyfluoroalkyl substances, and 
pesticides (Positive removal efficiencies were obtained for less than 
half of them). 

Golovko et al. (2021) 

Spain 2 Primary + 
Secondary 

Microplastics (91–97) Franco et al. (2021) 

China 2 Primary + 
Secondary + 
Tertiary 

Endocrine disrupting compounds: paroxetine (36–49), fluoxetine 
(32–45), sertraline (56), citalopram (38–55), venlafaxine (-4–6.5), 
amitriptyline (23-69), bisphenol A (96–99), and estriol (100).  

Cao et al. (2020) 

Peru 4 Primary + 
Secondary 

27 pharmaceutical compounds. For 13 of them, the reported 
removal efficiency was positive (20–100), whereas for the others it 
was negative (-250 – -10). 

Nieto-Juarez et al. (2021) 

Colombia 2 Primary + 
Secondary 

Acetaminophen (23–95), azithromycin (35–37), ciprofloxacin (35–
65), clarithromycin (15–35), clindamycin (35–40), diclofenac (10–
35), doxycycline (23–48), irbesartan (8–20), losartan (7–38), 
naproxen (20–37), norfloxacin (37–68), valsartan (25–45), 
venlafaxine (35–60), carbamazepine (-5–10), erythromycin (-3–12), 
metronidazole (-75 – -10), sulfamethoxazole (-64 – -3), and 
trimethoprim (-33 – -5). 

Botero-Coy et al. (2018) 

Mexico 1 Primary + 
Secondary + 
Tertiary 

35 pharmaceuticals, including naproxen, acetaminophen, and 
diclofenac. The most abundant detected pharmaceuticals presented 
positive removal efficiencies (> 97 %). 

Rivera-Jaimes et al. (2018) 

*The combination of treatment steps can vary depending on each evaluated WWTP. 
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5.2.1. Adsorption-based methodologies 
 

Adsorption is a well-known physicochemical process implemented 

for EOPs removal from water environments. More specifically, 

adsorption is a surface phenomenon in which a particular molecule 

(the adsorbate) is transferred from a liquid or gaseous phase to the 

surface of a solid material (the adsorbent) or, in some cases, a liquid 

phase. This mass transfer is controlled by means of thermodynamic 

equilibria, but also, it is described qualitatively by the favoring of 

certain interactions between adsorbate and adsorbent (Agboola and 

Benson, 2021). Among these, physical molecular interactions like 

van der Waals forces, polar interactions, hydrogen bonding, and 

electrostatic interactions, are highlighted. Chemical interactions, in 

which a new chemical bond is formed, e.g., coordination bond, 

purely covalent bond, and dynamic covalent bonds, are also 

considered. For the first case (physisorption), the process has a 

reversible nature, while, in the second case (chemisorption), the 

process is irreversible and at least one subsequent methodology is 

required to regenerate the adsorbent (Ünveren et al., 2017). The type 

and extent of adsorption are influenced by the concentration of 

adsorbate and adsorbent, the nature of adsorbate and adsorbent, 

surface area, pH, temperature, and interfering substances. All of 

these are common parameters taken into account when studying 

adsorption kinetics and equilibria, since they affect the maximum 

removal capacity (Aarab et al., 2020; Delgado et al., 2019). 

Experimentally, the removal of EOPs from an aqueous medium by 

an adsorption process can be summarized as: (i) adding the 

adsorbent to the liquid solution where the targeted pollutant is 

present, (ii) mixing properly and waiting until the equilibrium is 

reached, (iii) removing the adsorbent from the liquid solution, 

usually, by a simple filtration, and (iv) desorbing the adsorbed 

pollutants by another liquid solution with a proper set of conditions 

to regenerate the adsorbent (Martín et al., 2018). In this way, as a 

non-conventional water treatment technique, adsorption has 

important characteristics like efficiency, cost-effectivity, and simple 

design, as well as easy operation and regeneration (Bhatnagar and 

Anastopoulos, 2017; Perez et al., 2020). As shown in Table 4, 

different types of adsorbents and, thus, different types of 

interactions have been evaluated for EOPs removal from water. 

They are mainly classified according to their nature as natural 

adsorbents and synthetic adsorbents.  

For their part, natural adsorbents comprise both organic and 

inorganic raw renewable materials utilized for pollutant removal 

from  aqueous  environments.  Among  natural  organic  adsorbents,

 

Table 4. Some examples of adsorbents developed for EOPs removal. 
 

Adsorbent Type of treated water Evaluated EOPs Removal capacity or 
efficiency* 

Reference 

Flax shives and oat hulls Artificial polluted water Carbamazepine 40 – 100 mg/g (24 – 
72 h) 

Aghababaei et al. 
(2021) 

Wood, coal, peat, and coconut Wastewater 15 EOPs, including atrazine, carbamazepine, 
diclofenac, ketoprofen, sulfamethoxazole, 
among others. 

Up to 81 % (10 mg/L 
adsorbent; 45 min) 

Mailler et al. 
(2016b) 

Rice husk Artificial polluted water Acid Orange 7 ~ 4 mg/g (3 h) Swarnalakshmi et 
al. (2018) 

Wood, rice husk, olive stones, and 
herbaceous waste 

Wastewater Amoxicillin 80 – 95 % (1 – 400 
g/L; 5 – 30 min) 

Saldarriaga et al. 
(2021) 

Activated carbon Artificial polluted water 
and wastewater 

Carbamazepine and sildenafil citrate > 90 % (100 mg/L; 10 
h) 

Delgado et al. 
(2016) 

Activated carbon Industrial wastewater 2-nitrophenol and ketoprofen 84 – 179 mg/g (300 
min) 

Sellaoui et al. 
(2021) 

Bentonite clay Artificial polluted water Carbendazim 1.5 mg/g (15 min) Rizzi et al. (2020) 
Montmorillonite Artificial polluted water Amitriptyline 276 mg/g (4 h) Chang et al. (2021) 
Microporous triazine polymer Artificial polluted water Sulfamethoxazole 483 mg/g (1 h) Akpe et al. (2020) 
Hyper-crosslinked porous polymers 
based on spirobifluorene, triptycene, 
and 2,5-dibromopyrazine 

Artificial polluted water Bisphenol A,  2,4-dichlorophenol, 2-naphtol, and 
bisphenol S 

455 – 562 mg/g (10 
min) 

Jia et al. (2018) 

Hydroxypropyl-β-cyclodextrin Artificial polluted water Bisphenols (A, S, and F) 80 – 96 % (2 g/L; 60 
min) 

Cai et al. (2020) 

Poly(styrene-co-divinylbenzene) and 
carbon nanotubes 

Artificial polluted water Simazine, prometon, and prometryn ~ 26 µg/g (10 min) Jiang et al. (2021) 

Wood-based cellulose nanocrystals Artificial polluted water Auramine O 20 mg/g (5 – 10 min) Pinto et al. (2020) 
Chitosan-hydroxyapatite 
nanocomposites 

Artificial polluted water Norfloxacin 92 % (0.5 g/L; 120 
min) 

Nayak et al. (2021) 

Graphene oxide Artificial polluted water Valsartan, oxybenzone, caffeine, 
sulfamethozaxole, bisphenol S, metolachlor, 
carbamazepine, and sucralose. 

> 90 % (0.1 – 0.6 
mg/L; 15 min) 

Fu et al. (2021) 

*Additional information, such as the adsorbent’s concentration and contact time, is provided. 
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plant-derived materials, such as rice husk, sugarcane bagasse, 

almond shell, oil palm shell, cotton waste, cashew nutshell, garlic 

peel, etc. (Ighalo and Adeniyi, 2020; Jain et al., 2016), and other 

bioderived materials like chitin, fungi, peat, biomass, yeast, and 

eggshell, are included (Vahabisani and An, 2021; Younas et al., 

2021). The utilization of this kind of adsorbents has important 

advantages: (i) abundant availability, (ii) cheap materials, (iii) 

minimal pretreatment requirements, and (iv) high removal 

efficiencies and capabilities. In addition, they are in accordance with 

the actual trend associated with the implementation of renewable 

resources, e.g., agriculture and animal waste, for the design of new 

functional materials and the establishment of sustainable economics 

(Kyzas and Kostoglou, 2014). Through them, it has been possible to 

remove efficiently a high quantity of EOPs from water 

environments, including pharmaceuticals, endocrine disrupting 

compounds, pesticides, caffeine, dyes, industrial additives, among 

others (Al-Yousef et al., 2021; Lv et al., 2021; Tang et al., 2021; 

Yong et al., 2018). Stability and by-products release are important 

drawbacks of biomass as adsorbents, such that, chemical and 

physical modifications or pretreatments have been proposed to 

overcome it, e.g., through bases, metal salts, acids, extractions, 

oxidation, etc. (Adewuyi et al., 2020).  

On the other hand, natural inorganic adsorbents are one of the most 

utilized, commercially available adsorbents for EOPs removal, 

since they are well-studied, efficient, and stable adsorbents. In this 

case, activated carbon, silica gel, activated alumina, zeolites, resins, 

and clays are included (Chua et al., 2021; Diagboya and Dikio, 

2018). Among these, activated carbon are of great interest and 

implementation due to its high surface area and removal efficiency 

towards organic molecules, such as dyes (Delgado et al., 2019). 

However, the employment of clays (e.g., zeolites) as adsorbents 

have also increase recently, especially, for removing charged 

molecules and ions from aqueous environments. These natural 

materials have exceptional properties like cation exchangeability, 

high pore-volume, and large specific surface area (Cardona et al., 

2020). Clays, in their natural form or chemically modified, have 

been applied as adsorbents for many EOPs in waters (Najafi et al., 

2021; Rizzi et al., 2020). In contrast with bioadsorbent, inorganic 

adsorbents can have less removal capability due to the limited type 

and points of interactions with pollutants, i.e., biomass-derived 

adsorbent generally possess a greater quantity of functional groups 

than natural inorganic adsorbents. Thus, some surface chemical 

modifications have been employed to enhance their removal 

efficiency by the inclusion of different functional groups (Lerma et 

al., 2018; Ullah et al., 2020). 

Finally, synthetic adsorbent comprise mainly well-designed 

polymeric materials obtained through different chemical methods at 

laboratory and industrial scale. The main advantages of a synthetic 

approach to obtain new adsorbents is the possibility to enhance 

notably removal efficiencies by tunning the chemical and physical 

structure of the adsorbent. They can have high porosity and surface 

area as activated carbon (Waheed et al., 2021). Thus, a diversity of 

polymeric structures, e.g., polyethyleneimine, polymeric dextrans, 

polyvinyl chloride, polyacrylic acid, polystyrene resins, etc., have 

been applied as adsorbents for pollutant removal from water media 

(Moradi and Sharma, 2021; Romita et al., 2019). Likewise, 

molecular imprinted polymers have also been used as adsorbents for 

EOPs since, as discussed early, these present a higher selectivity in 

their removal performance (Bhogal et al., 2021). Although their 

important characteristics as adsorbents, synthetic polymers deal 

with some relevant disadvantages like the utilization of petroleum 

chemicals in the synthetic process and the low degradation rates of 

the final materials, which direct the attention and preferences for 

bio-based adsorbents (Flores-Céspedes et al., 2020). Other type of 

synthetic materials can be included in this category, for example, 

carbon-based nanomaterials, polymeric nanomaterials, metal 

nanoparticles, metal-organic frameworks, and organic/inorganic 

hybrid materials, which present enhanced removal efficiencies 

(Adegoke et al., 2020; Gil et al., 2021; Kyzas and Matis, 2015). 

Particularly, nanomaterials, e.g., graphene, graphene oxide, carbon 

nanotubes, fullerenes, TiO2 nanoparticles, Fe2O3 nanoparticles, 

silica nanoparticles, etc., are of emerging interest as EOPs 

adsorbents due to their unique properties such as high mechanical 

strength and thermal conductivity, magnetic response, high specific 

surface areas, useful optical properties, and controlled chemical 

behavior (Kazemi et al., 2018; Peralta et al., 2021). 

 

5.2.2. Membrane separation systems (MSSs) 
 

MSSs have been utilized since the last century for the treatment of 

simple and complex mixtures, including polluted water, and they 

have proven to be a good complement to conventional water 

treatment methodologies. In terms of operation, MSSs use a 

semipermeable barrier (a liquid or solid membrane) to separate the 

components of a mixture according to two main aspects: molecular 

weight (or size) and solubility/diffusion in the membrane. In 

addition, the separation process is mediated by a driving force, 

which can be a hydrostatic pressure gradient, temperature gradient, 

electrical field, or a chemical potential gradient (Palencia et al., 

2016). Currently, pressure-driven MSSs are highly implemented for 

different purposes, including the removal of organic pollutants from 

water environments. Depending on the type of compound or particle 

that can be removed, pressure-driven MSSs are classified as 

microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and 

reverse osmosis (RO). For example, MF and UF are employed to 

separate colloidal particles, microorganisms, cells, and high 

molecular weight polymers, whereas NF and RO are useful to 

separate small organic molecules, salts, and ions (Kárászová et al. 

2020). As a non-conventional water treatment technique, MSSs 

have important properties such as high efficiency, simple operation, 

lower energy consumption, continuous separation, the ease of 

industrial scale-up, and the possibility of coupling with important 

analytical techniques or other kind of processes (Lerma et al., 2016). 

However, a few drawbacks of MSSs are membrane fouling, which 

results in higher costs and energy consumption, and selectivity, 

which limits their applicability in many cases (Chang et al., 2019; 

Park et al., 2017).  

As can be seen in Table 5, different approaches have been utilized 

for EOPs removal from water samples. In this sense, works focused 

on the type of membrane (polymeric, metal, or ceramic), its physical 
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Table 5. Some recent membrane-based methodologies for EOPs removal from water. 
 

Membrane Type of water Targeted EOPs Removal efficiency 
or capacity (%) 

Reference 

Aluminosilicate-based MF membrane Artificial polluted water Benzophenone-4 > 97 Sun et al., 2021 
Polyvinylidene fluoride MF membrane with 
supported activated carbon 

Artificial polluted water Carbamazepine, 
tetracycline, norfloxacin, and 
sulfamethoxazole 

> 90 Chen et al. 2021 

Polyvinylidene fluoride hollow fiber UF 
membrane 

Raw water Humic acid > 90 Ma et al. (2020b) 

Polysulfone, polyethersulfone, polyamide, and 
regenerated cellulose UF membrane 

Artificial polluted water Alkylbenzene sulfonates 55 – 91 Kowalska (2008) 

Polyamide RO membrane Wastewater Caffeine, theobromine, 
theophylline, amoxicillin and 
penicillin G 

Up to 99 Lopera et al. (2019) 

MXene clay-cellulose acetate NF membrane Artificial polluted water Rhodamine B 99 Xu et al. (2020) 
Poly(diallyl dimethylammonium chloride) and 
poly(sodium styrenesulfonate) NF membranes 

Artificial polluted water Perfluorooctanoic acid, 
perfluorooctanesulfonic, 
amoxicillin, and tetracycline 

Up to 90 Wang et al. (2021b) 

β-cyclodextrin modified cellulose NF 
membrane 

Artificial polluted water Bisphenol A Up to 100 Lv et al. (2021) 

Carbon impregnated chitosan-based loose NF 
membrane 

Wastewater Eriochrome black T, 
methylene blue, rhodamine 
B, red brown dye, congo red, 
and humic acid. 

> 80 Halakarni et al. (2021) 

Forward osmosis MF membrane bioreactor Wastewater Enrofloxacin, 
sulfamethazine, cephalexin, 
amoxicillin, lomefloxacin, 
and ampicillin 

58.9 – 100 Qiu et al. (2021) 

Lacasse-coated poly(vinylidene fluoride) 
membrane 

Artificial polluted water Congo red > 90 Zhu et al. (2020) 

Membrane bioreactor combined with UV/H2O2 Artificial polluted water 17α-ethinylestradiol > 99 Da Costa Fonseca et al. 
(2021) 

Metal (cerium) organic framework – polyether 
sulfone UF composite membrane 

Artificial polluted water Humic acid 99 Mansor et al. (2021) 

Ceramic (α-Al2O3) membrane decorated with 
CoFe2O4 nanocatalyst 

Artificial polluted water Methylene blue and 
ibuprofen 

> 95 Wang et al. (2020e) 

Ultrasound, adsorption, and polysulfone UF 
membrane  

Wastewater Diclofenac, carbamazepine, 
and amoxicillin 

99 Naddeo et al. (2020) 

 

structure (e.g., pore size), the arrangement of the separation system 

(e.g., coupled membranes, recirculation systems, etc.), and the 

development of membrane-based hybrid methods for EOPs removal 

have been published in recent years (Hilal and Wright, 2018; Tang 

et al., 2018b). For example, polymeric and ceramic MF and UL 

membranes have been utilized for EOPs removal by means of 

adsorption processes (Qalyoubi et al., 2021). Through them, 

relatively high efficiencies (> 90 %) have been obtained for 

particular EOPs, e.g., benzophenone-4, estrone, 17-β-estradiol, 17α-

ethynyl estradiol, antibiotic resistance genes, carbamazepine, 

tetracycline, among others (Chen et al., 2021; Li et al., 2019; Ma et 

al., 2020b; Sun et al., 2021). One of the main advantages of MF and 

UL membranes is the low required hydraulic pressure (i.e., lower 

energy consumption) and higher fluxes (i.e., faster separations); 

however, their removal efficiencies are more limited for small 

pollutants in comparison with NF and RO. Usually, NF and RO 

reach higher efficiencies in EOPs removal due to their low pore size 

(0.0001 – 0.001 µm), but with higher energetic costs and low fluxes. 

In addition, NF and RO have a higher susceptibility to fouling 

(Lopera et al., 2019; Xu et al., 2020).  

To overcome these drawbacks, the coupling of various membrane 

modules, for example, MF-NF, MF-OR, UL-NF, UL-RO, etc., as 

well as the chemical or physical modifications of membrane surface 

or matrix have been proposed (Ezugbe and Rathilal, 2020). The 

latter is of great interest in polymeric membranes due to their 

structural versality and functionality, e.g., superficial inclusion of 

functional polymer chains for diminishing fouling susceptibility 

and/or enhancing removal selectivity (Oshiba et al., 2021; Zhu et 

al., 2020). Specially, membrane based on polymers are of the most 

implemented since they result to be cheap, easily obtained, versatile, 

and have good mechanical and chemical stability. Thus, a high 

quantity of polymeric membrane has been used with a focus on 

EOPs removal from water. Common employed polymeric 

membranes are made from polypropylene, polyvinylidene fluoride, 

polyethersulfone, or polysulfone. However, new polymeric 

membranes are developed constantly from different polymer 
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structures. For example, Pagno and co-workers reported recently the 

preparation of novel polymeric membranes made from polyesters 

like poly(butylene adipate-co-terephthalate) and poly(ε-caprolac-

tone) for the effective removal (> 60 %) of tetracycline in aqueous 

samples (Pagno et al., 2020). Polyelectrolytes, such as poly(diallyl 

dimethylammonium chloride) and poly(sodium styrenesulfonate), 

have also useful for obtaining multilayer membranes applied in the 

removal of EOPs in saline wastewaters, as reported by Wang et al. 

(2021b). On the other hand, biopolymer have gained relevance for 

preparing membranes focused on EOPs removal, e.g., cellulose and 

chitosan. Employing them, removal efficiencies have exceeded 80 

% (Lv et al., 2021; Mansoori et al., 2020).    

Finally, membrane-based hybrid methods have arisen recently as an 

efficient non-conventional water treatment. Among these, advanced 

oxidation, ozonation, coagulation, photocatalytic processes, adsorp-

tion, and biological treatment in conjunction with membrane 

filtration have been proposed (Stylianou et al., 2015; Zainith et al., 

2021). Particularly, MSSs in conjunction with biological treatment, 

also called “membrane bioreactors”, have successfully applied for 

EOPs removal and they are positioned as a prominent water 

treatment technique. The combination of the EOPs rejection 

capacity of MF and UF membranes with the biological degradation 

provided by microorganisms results to be a highly effective 

technique for wastewater treatment (Saidulu et al., 2021). Personal 

care products (> 80 %), antibiotics (> 70 %), pesticides (> 90 %), 

among others EOPs have been removed from water in high 

efficiency using this hybrid technique (Qiu et al., 2021; Ren et al., 

2021; Santos de Almeida Lopes et al., 2020). Other novel, effective 

hybrid technique is polymer-enhanced ultrafiltration or liquid-phase 

polymer-based retention, which combines the rejection of 

macromolecules by a UF membrane with the capability of a soluble 

polymer to interact with particular species, resulting in an 

ultrafiltration process capable of retaining much smaller molecules. 

This technique has been well-studied and applied for the removal of 

different EOPs from water, for example, dyes and antibiotics, in 

high efficiencies (Palacio et al., 2020; Palencia et al., 2017). That is 

how membrane-based hybrid methods have gained great 

acceptation in scientific community and, actually, they can be 

considered as one of most promising non-conventional water 

treatments. 

 

5.2.3. Advanced oxidation processes (AOPs) 
 

AOPs are a type of non-conventional water treatment that have been 

studied and applied since the end of the last century. Until now, 

some of them have been used at medium and large scale for water 

treatment, while the majority of the studies focused on these 

processes remain at laboratory scale. Here, a brief introduction to 

AOPs will be carried out, however, a deeper discussion of this topic 

can be found in specialized reviews (Bartolomeu et al., 2018; 

Ricardo et al., 2021). In a general sense, AOPs are based on 

particular chemical reactions by which EOPs can be fully oxidized 

and mineralized, producing carbon dioxide, water, and inorganic 

ions. These processes can be divided in homogeneous AOPs, which 

include photolysis (i.e., UV light), sonolysis (i.e., ultrasound), 

ozonolysis, hydrogen peroxide, Fenton processes, electrochemical 

methods, and their possible combinations; and heterogeneous 

AOPs, which comprise the employment of solid semiconductors 

catalysts, such as TiO2, ZnO, MoS2, among others, in conjunction 

with light (Rodriguez et al., 2011). Through them, large amounts of 

highly oxidizing species (radicals), such as OH⦁, O2
⦁-, or SO4

⦁-, are 

generated in situ and, in this sense, a series of cascade-type reactions 

are initiated with the participation of the pollutant’s molecules. It 

has been reported that the radical species can degrade organic 

pollutants by hydrogen abstraction, electron transfer, or addition to 

double bonds and aromatic systems (Chávez et al., 2020). Here, 

organic radicals are produced, but they rapidly undergo additional 

reactions that produce the final most-oxidized products (Stanbury et 

al., 2020). In this way, harmful EOPs are converted to innocuous 

chemical species.  

Table 6 provides representative examples of the application of 

different types of AOPs to EOPs removal from water.  

 
Table 6. Some relevant examples about the utilization of AOPs for EOPs removal from water. 
 

Method Type of water Targeted EOPs 
Removal efficiency 

or capacity (%) 
Reference 

Sonolysis Artificial polluted water 
Acetaminophen, cloxacillin, diclofenac, 
naproxen, piroxicam, sulfacetamide, and 
cefadroxil 

Up to 100 
Camargo-Perea et al. 
(2021) 

Sonolysis (activated by O2 or Fe(III)) Artificial polluted water Metazachlor Up to 97 Kask et al. (2019) 

Sonolysis + Photocatalysis (TiO2) Artificial polluted water 
Sulfamethoxazole, bisphenol A, and 
atrazine 

>98 Ryu et al. (2021) 

UV irradiation Artificial polluted water N-chlorourea 92 Yang et al. (2021b) 
UV irradiation Artificial polluted water Tetracycline 75 Huang et al. (2019) 

UV irradiation Wastewater 
Ampicillin, tetracycline, ofloxacin, 
florfenicol, cephalexin, and amoxicillin 

>90 Ding et al. (2020) 

O3/UV irradiation Surface water 

More than 20 EOPS, including alachlor, 
atrazine, azithromycin, carbamazepine, 
clarithromycin, clindamycin, clothianidin, 
diclofenac, diphenhydramine, fluoxetine, 
isoproturon, among others. 

>85 Gorito et al. (2021) 
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O3/UV irradiation Wastewater 
Carbamazepine, fluoxetine, gemfibrozil, 
primidone, sulfamethoxazole, and 
trimethoprim 

~20 – 100 Sgroi et al. (2021) 

H2O2/ UV irradiation Artificial polluted water 
Methylene blue, basic blue 41 and acid 
orange 7 

Up to 100 Dhawle et al. (2021) 

H2O2/ UV irradiation Artificial polluted water Nitrosamines >75 Zhou et al. (2012) 
Peroxymonosulfate (activated by 
Co2+) 

Artificial polluted water 1,4-dioxane 100 Feng et al. (2020) 

Peroxydisulfate (activated by TiO2) Artificial polluted water 
Bisphenol A, 4-chlorophenol, 
sulfamethoxazole, and carbamazepine 

>80 Son et al. (2021) 

Photo-Fenton process (using sun 
light) 

Artificial polluted water Simazine >90 
Lojo-López et al. 
(2021) 

Fenton process Wastewater 
Diuron, gabapentin, sulfamethoxazole, 
terbutryn, and terbuthylazine 

70 – 100 Goswami et al. (2021) 

Photo-Fenton process Artificial polluted water 
2,4-D, diazepam, nicotine, and 
paracetamol 

Up to 85 Nippes et al. (2021) 

TiO2-based photocatalysis Artificial polluted water Quinalphos and 2-chlorophenol >70 Sharotri et al. (2019) 
TiO2-based photocatalysis Artificial polluted water Rhodamine B and Methyl Orange >90 Narzary et al. (2020) 
TiO2/hydroxyapatite-based 
photocatalysis 

Artificial polluted water Ciprofloxacin and ofloxacin Up to 100 
Bouyarmane et al. 
(2021) 

Nano-hybrid photocatalyst based on 
TiO2 and MoS2 

Artificial polluted water Methylene blue 97.5 
Karpuraranjith et al. 
(2022) 

Polyacrylonitrile/TiO2/polyaniline 
photocatalytic and adsorptive 
membranes 

Artificial polluted water Congo red >80 Xu et al. (2020) 

 

 

Homogeneous, single AOPs, such as sonolysis and photolysis, 

employ an energy supply (ultrasound and UV light, respectively) to 

promote the decomposition of EOPs either by the production of 

hydroxyl radicals or by the direct fragmentation of the pollutant 

structure. For its part, the application of an ultrasound frequency 

(300-1000 kHz) to a liquid sample with EOPs generates a cavitation 

phenomenon inside it. During this, different reactive radical species, 

mainly produced by the homolytic fragmentation of water (i.e., 

𝐻2𝑂 → 𝐻⦁ +𝑂𝐻⦁) are produced at three zones delimited by 

cavitation bubbles: a gaseous zone (inside the bubbles), a liquid-gas 

interface, and a bulk liquid zone. This way, the produced radical 

species interact with the pollutants and degrade them (Camargo-

Perea et al., 2020). Ultrasound is a green, simple, and efficient 

technique that has been employed for the removal of different 

organic pollutants, such as pharmaceuticals, industrial additives, 

pesticides, and other kind of EOPs (Camargo-Perea et al., 2021; 

Kask et al., 2019; Ziylan-Yavas et al., 2021). The efficiency of 

sonolysis can be modulated by the applied ultrasound frequency, 

temperature, pH, and the presence of certain species that enhanced 

the degradation process (Navarro et al., 2011). However, this 

technique presents limitations on the degradation of particular type 

of pollutants, i.e., pollutants with different polarity can experience 

different degradation, and the rate of that degradation (Ryu et al., 

2021). On the other hand, some particular compounds that present 

the property of absorbing UV light (e.g., halogenated aromatics, 

nitro compounds, phenols, conjugated hydrocarbons, among 

others), resulting in an excited more energetic state, can be degrade 

by light irradiation. In addition, the excited molecules of the 

pollutant can interact with oxygen to undergo different reactions 

capable of degrading them in a higher degree (Huang et al., 2019). 

Some authors also suggest the formation of oxidizing hydroxyl 

radicals in solution by UV irradiation (Yang et al., 2021b). For this 

process, only UV lamps (or, in some cases, sun light was also used) 

are generally required to irradiate the sample through an established 

interval of time, which results to be a highly accepted, simple 

process. UV light has been employed for the efficient degradation 

of bisphenol A, polycyclic aromatic hydrocarbons, disinfection by-

products, antibiotics, among others (Chu et al., 2021; Lei et al., 

2021; Rosińska, 2021). However, some disadvantages have been 

highlighted, such as limitations in the compounds that can be treated 

by this method, interference by turbidity and chemical species, and 

the generation of some harmful by-products (i.e., volatile 

halogenated hydrocarbons) (Fast et al., 2017). 

To overcome the drawbacks associated to ultrasonics and UV 

irradiation and, at the same time, to enhance the degra-

dation/removal efficiency through AOPs, some reagents and/or 

catalysts have been included in these processes. For example, ozone 

(O3) and hydrogen peroxide (H2O2) has widely implemented for this 

purpose (Gorito et al., 2021). As light sensitive species, both of them 

result to be fragmentated when they are irradiated with UV light, 

generating reactive OH⦁ and HO2
⦁ radicals capable to degrade the 

organic molecules present in the aqueous medium. In addition, 

ozone and hydrogen peroxide can directly oxidize them due to their 

intrinsic reactive nature (Abrile et al., 2021). The utilization of these 

combined AOPs leads to high efficiencies for the removal of 

pharmaceuticals compounds even up to 100 % of their initial 

concentrations in wastewater, as reported by Sgroi and co-workers 

(2021). Complex mixtures of EOPs in WWTPs have also been 

treated by means of O3/UV, obtaining > 80 % of removal efficiency 

(Mathon et al., 2021). Other kind of EOPs, such as dyes, pesticides, 
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and disinfection by-products have been successfully removed from 

water employing H2O2/UV combined methods (Dhawle et al., 2021; 

Lojo-López et al., 2021; Zhou et al., 2012). However, some 

drawbacks of these oxidation systems lies in the utilization of 

relatively high concentration of oxidizing agents for degrading 

pollutants at very low concentrations, which results not only in high 

costs, but also in indirect environmental effects; as well as, ozone 

has limited solubility in water and the process presents great 

susceptibility towards temperature and pH variations (Brienza and 

Katsoyiannis, 2017). 

More sophisticated AOPs involves the utilization of other type of 

reactive species for degrading EOPs, by instance, sulfate radical 

(SO4⦁-). In the first case, the process involves the in-situ production 

of SO4⦁- by precursor oxidants, like persulfate (S2O8
2-), also called 

or peroxydisulfate, and peroxymonosulfate (HSO5
-). The produced 

sulfate radicals have a good oxidizing character (E0 = 2.5 – 3.1 V) 

and, thus, they are capable of degrading organic pollutants, 

producing CO2 and H2O (Uzunboy et al., 2021). Some advantages 

of employing sulfate radicals as oxidizing agents include cheap and 

very stable precursors, as well as, different ways for activating them 

(e.g. heat, bases, transition metals, and UV light) (Divyapriya and 

Nidheesh, 2021; Gong et al., 2020). Employing sulfate radical-

based AOPs, toxic organic solvents, industrial additives, 

pharmaceuticals, and dyes have been removed from water in high 

efficiencies (Ding et al., 2020b; Feng et al., 2020; Son et al., 2021).  

On the other hand, AOPs can be enhanced by the employment of 

various promoters and catalyst; being relevant examples iron (Fe) 

ions and some semiconductors, as mentioned above. More 

specifically, Fe(II) and Fe(III) can catalyze the degradation of 

organic pollutants by means of the production of OH⦁ radicals in 

presence of H2O2. This methodology is called Fenton processes 

(Zhang et al., 2019). Although they can be carried out by heat, UV 

light is most preferred as the promoter agent due to the high reached 

quantum and removal efficiencies. In terms of chemical reactions, 

photo-Fenton processes can be summarized as the direct reaction 

between Fe(II) and H2O2 to produce Fe(III) and hydroxyl radicals 

(𝐹𝑒2+ +𝐻2𝑂2 → 𝐹𝑒3+ + 𝑂𝐻− + 𝑂𝐻⦁), followed by the regene-

ration of Fe(II) from Fe(III) by UV light (𝐹𝑒3+ +𝐻2𝑂 + ℎ𝑣 →
𝐹𝑒2+ +𝐻+ +𝑂𝐻⦁) (Wang and Tang, 2021). Strictly, these 

processes must to be conducted at acidic pH (~3), since iron ions 

can be precipitated as iron hydroxides at higher pH (Scaria et al., 

2021). In addition, some complexes of iron with organic acids, 

which usually absorb light in a larger range of wavelengths, have 

been employed to enhance the efficiency of Fenton processes 

(Miller et al., 2016). As a non-conventional water treatment, (photo-

)Fenton reactions result to be simple, flexible, low or null energy 

requirement (the employment of sun light is also possible), and 

easy-to-handle. This way, they have been widely used for treating 

different effluents and degrading organic pollutants, for example, 

herbicides, antibiotics, dyes, and illicit drugs (Da Silveira Salla et 

al., 2020; Goswami et al., 2021; Lojo-López et al., 2021; Nippes et 

al., 2021). However, some drawbacks of this methodology have 

been highlighted, such as mandatory acidification, the removal of 

iron after the treatment, and the employment of relatively large 

quantities of iron to reach a high efficiency in some cases 

(Bartolomeu et al. 2018). 

Finally, various heterogeneous photocatalysts based on 

semiconductors have been developed as an efficient alternative to 

degrade and remove organic pollutants in water. Among these, 

titanium dioxide (TiO2) has been widely explored and applied due 

to its relevant properties, such as high efficiency, low toxicity, 

higher resistance against photo-corrosion, availability, and good 

cost-benefits (Gupta et al., 2021; Paumo et al., 2021). In general, 

TiO2 (and other kind of semiconductor materials employed for this 

purpose), has the ability to absorb light and promote one electron in 

its valence band to its conduction band, while a hole is also 

generated in the valence band. Then, the produced hole in the 

semiconductor materials can interact with water molecules or 

hydroxyl anions to generate OH⦁ radicals (capable to degrade 

organic pollutants) in the medium; or with pollutant molecules by 

electron transfer, degrading them. On the other hand, electrons are 

transferred to oxygen (O2), producing O2⦁- radicals, which are also 

able to react with pollutant molecules. In this way, a catalytic cycle 

is established based on purely electron transfers from the molecules 

in the medium to the semiconductor material mediated by light, as 

shown in Figure 4 (Schneider et al., 2014). Various TiO2-based 

photocatalyst systems have been explored for the removal of dyes, 

pesticides, pharmaceuticals, and even nanoplastics (Domínguez-

Jaimes et al., 2021; Narzary et al., 2020; Sharotri et al., 2019). 

Likewise, composite TiO2-based materials with enhanced 

physicochemical properties, e.g., adsorption of pollutant molecules, 

as well as hybrid oxidative processes based on TiO2 photocatalysis 

were also reported as catalysts with high efficiency for 

photodegradation of organic pollutants (Bouyarmane et al., 2021; 

Karpuraranjith et al., 2022).  

As alternatives, other types of semiconductors have been employed 

for photocatalyzed degradation of EOPs in waters. Important 

examples are cadmium sulfide (CdS), zinc oxide (ZnO), tungsten 

trioxide (WO3), tin dioxide (SnO2), among others (Zhu and Zhou, 

2019). However, these have not outweighed the inherent advantages 

of using TiO2. 

 

 
 

Figure 4. General mechanism of the degradation of organic pollutants by TiO2-
based photocatalysis. 
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Until now, semiconductor-based photocatalysis represent a very 

promising method for the treatment of polluted water. However, 

various aspects need to be solved for a proper implementation of 

these processes at large scale, e.g., light absorption efficiency by the 

semiconductors and the recovery of the catalyst after treatment. 

 

6. Conclusions and perspectives 
 

EOPs in water bodies at nano-, micro- and even milligrams per liter 

level represent a huge risk for the availability and usage (human and 

industrial) of this important natural resource, as well as, for the life 

of different living beings, including aquatic organisms and humans. 

According to the above, there is a current need for the detection and 

monitoring of EOPs in water, such that, it is possible to determine 

their concentrations, fate, and environmental behavior. Likewise, 

the establishment of regulations on the common utilization of EOPs 

and the development of proper solutions towards their removal or 

elimination require knowing about their presence in water 

environments. Thus, different analytical protocols have been well-

studied and explored for determining EOPs. Generally, they 

involves three main steps: (i) taking a sample from the targeted 

water body, (ii) if required, treating the sample by means of 

preconcentrating and cleaning up techniques, e.g. SPE and LLE, and 

(iii) analyzing the treated sample using mainly a chromatographic 

technique (LC or GC) coupled with MS. In this way, EOPs have 

been detected even at trace concentrations in various water 

environments, including pharmaceuticals, pesticides, personal care 

products, industrial chemicals, cyanotoxins, and others. Once they 

are detected, it is needed to think about their removal from the 

aqueous medium. For this, usually employed or conventional 

methodologies like primary and secondary treatment steps that 

commonly utilize filtration, coagulation/flocculation, and biological 

treatment, can contribute to it, but with limited removal efficiencies. 

Thus, a tertiary treatment step, or a non-conventional water 

treatment, is required to accomplish it completely. Among these, 

adsorption-based techniques, membrane-based separation systems, 

and AOPs are included, which have been explored extensively for 

EOPs removal from water. Each methodology has its own 

advantages and disadvantages and, thus, some of them can be more 

suitable for the removal of a specific class of EOPs than others. In 

addition, there is the possibility to use in conjunction different 

removal techniques, such that the removal efficiency can be 

enhanced notably (>90 %).  

Currently, the determination of EOPs in water and their removal 

from it remain as important topics in different research fields, such 

as environmental sciences, chemistry, engineering, physics, among 

others. Future research need to be focused on some particular 

aspects that have to be addressed from many points of views to 

advance in the establishment of proper solutions to this problematic: 

(i) designing and unifying accurate analytical protocols to 

determine/monitor EOPs with the aim to obtain comparable results 

and not to incur in bias, (ii) optimizing the parameters (e.g. type of 

adsorbent, membrane, or oxidizing agents, temperature, pH, 

interference elimination, etc.) associated with each removal 

methodology for ensuring the highest efficiencies, (iii) studying in 

a higher degree the coupling of different removal techniques for 

treating polluted waters, and (iv) advancing in the utilization of 

these techniques at higher scales. All the above should be 

approached from an ecofriendly point of view, taking into account 

the implementation of renewable raw materials, the importance of 

recycling, and the actual need to ensure circular economics.  
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