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Abstract. The potential of the optical spectroscopy as a low-cost and non-invasive method, for prediction of chemical properties of 

agricultural soils related to their health and nutritional status has been previously demonstrated. Moreover, the advances on the imaging 

spectroscopy cameras have improved the usefulness of these techniques for the soil analysis, due to their ability to generate a noticeable 

reduction of analysis time allowing to characterize and compare different type of samples simultaneously at field and laboratory level, 

with a minimal consume of reagents and production of wastes. This study examines the used of multispectral imaging in near infrared 

region (730-920 nm) to estimate the values of pH, organic carbon content and effective cation exchange capacity in soil samples. For 

this, 85 soil samples grouped by their agricultural usage were collected and analyzed. In order to determine the real reflectance of each 

sample, the images processing required a radiometric calibration (normalization) to separate the electronic and illumination contributions 

on the optical signal. This allowed to identify significant relationships between reflectance values and gray level of the images with the 

properties of interest, obtaining Pearson's coefficients higher to 0.85 for those samples of mostly acidic properties (pH< 6.0). The 

developed linear models provide acceptable predictions with values of the ratio to performance deviation higher to 2.0 in all cases. 
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1. Introduction  
 

Soils are considered a natural non-renewable resource biologically 

active, compound mainly by minerals, water, air and organic matter 

(Bogrekci and Lee, 2005; Palacios-Orueta and Ustin, 1998; 

Schwanghart and Jarmer, 2011), whose properties are highly 

conditioned by the parent material from which it originated, its 

history, and the activities developed in their surface. These support 

several vegetable, animal and human processes, along with possess 

considerable importance in water and carbon cycles; therefore, there 

are many efforts to develop analytical and experimental 

methodologies that allow to estimate those properties that determine 

their nutritional state. In this way, traditional chemical methods 

result laborious and unprofitable for the analysis of huge soil 

samples quantity, due to requires the use of expensive reagents, 

where each property is obtained using specific methods (Gomez et 

al., 2008; Ramírez-Rincón et al., 2021; Shepherd and Walsh, 2002). 

Non-invasive sensing technologies based-on optical spectroscopy, 

along with the used of statistical and mathematical analysis tools, 

have been widely a used as a reliable method for simultaneously 

classification, estimation and characterization of structural and 

physicochemical properties in organic and inorganic samples (Ben-

Dor and Banin, 1995; Gomez et al., 2008). This is possible through 

the measurement of their optical response within a specific spectral 

range (UV – MIR; 0.3 – 25 µm), denominated spectral footprint, 

which can be directly associated to sample molecular composition 

(Hawranek et al., 2002; Panov and Fripiat, 1998; Zaki et al., 2001). 

It is calculated that economical and time cost per sample, by using 

optical spectroscopy is only 40% compared to traditional chemical 

method, however it is possible reduce it up to 15% through imaging 

spectroscopy techniques, due to these last allow the measurement of 

larger surfaces instantly (O’Rourke and Holden, 2012). 

As a consequence of own soil nature, which is expose continuously 

to spatial and temporal variations, the analytical methods must be 

able to provide compositional information in short time periods to 

be efficiently applied in agricultural industry. This, in order to know 

their nutritional and health state, establishing prevention and 

correction tools for the successful terrain management (Abbas et al., 

2020; Bünemann et al., 2018; Lal, 2008). In general, the nutritional 

state and soils health are related to their capacity to provide the 

adequate conditions for plants growth, which is mediated mainly by 

pH levels, mineral components (associated to effective cation 

exchange capacity or CECe) and organic carbon content (OC), 

among others (Andersson et al., 2000; Curtin et al., 1998; Gentili et 

al., 2018; Neina, 2019).   

The multi/hyperspectral spectroscopy, based on the generation of 

continuous and individual images in several spectral bands, provide 

optical and spatial information of an object in each pixel, resulting 

a data cube composed by two spatial dimensions (area) and one 

spectral (Bonifazi and Serranti, 2008). The characterization of 

extensive areas is developed through satellite sensors, which seek to 

obtain geochemical signatures in specific areas for applications in 

cartographic, geology, agriculture, and mineral and oil industries 

(Ben-Dor and Banin, 1995; Jia et al., 2016; Viscarra et al., 2006; Xu 

et al., 2016). Nevertheless, it is recognized that this type of sensors 

presents a fault in spatial resolution, since only one pixel in the 

imaging can represents areas up to 900 m2, loosing specificity in the 

characterization of interest zones (Gomez et al., 2012; Manley, 

2014).  

The development of spectrometers of reduced size and the 

commercialization of this technology have popularized the use of 

the multi/hyperspectral cameras at laboratory and field as an 

alternative tool, since it allows to perform direct, fast and accurate 

comparisons of several samples under real conditions (Haijun et al., 

2017). In agricultural applications, it has been demonstrated that 

imaging spectroscopy provides reliable results in the 

physicochemical characterization of soils, where frequently the 

optical information contained in the images is analyzed by using 

multivariate statistical techniques for spectral calibration and 

prediction of properties (Gmur et al., 2012; Jung et al., 2015; 

Stevens et al., 2008; Vaudour et al., 2016). 

The studies developed in the visible and near infrared range (VNIR; 

400-1000 nm) are centered mostly in those properties related with 

content of carbon (organic and inorganic) and moisture, due to their 

influence on color and optical absorption/reflection of soils in this 

region (Ferrando Jorge et al., 2021; Moritsuka et al., 2014; 

Vodyanitskii and Savichev, 2017). The above is because the 

absence of vibration characteristic bands, common in the IR region, 

limits the estimation of minerals and other important compounds for 

soils nutrients. This study aims to evaluate the potential of imaging 

spectroscopy to determine the pH, organic carbon content (OC) and 

effective cation exchange capacity (CECe) in agricultural soil 

samples, by using a multispectral camera under laboratory 

conditions within the spectral range 730-920 nm. The results are 

used to establish prediction and comparison criteria in the 

characterization of soils from their multispectral images and order 

to advance in the development of routine analyzes with lower cost, 

a minimal use of chemical reagents, a lower analyzing time, and a 

null production of residues related with the analysis procedures. 

 

2. Materials and methods  
 

2.1. Soil samples 
Soil samples used in this study were collected to 20 cm from the 

surface, in different agriculture crops located in the departments of 

Bolivar and Cordoba (Colombia), dedicated to planting of cotton, 

corn and yuca. Table 1 shows the descriptive analysis of pH, CEC 

and OC for 85 soil samples, classified by groups according to their 

agriculture use (G1-G5). The pH values were obtained by the 

potentiometric method, using a homogeneous mixture of soil and 

water in relation weight/volume 1:1. The Walkley-Black method 

was used to determine the OC (ICONTEC, 2013), while CECe was 

determined by ammonium acetate method 1 N at pH 7.0 

(ICONTEC, 2016, 2018).  

The average (�̅�) pH for all groups takes similar values to the general 

(GN < 5.8) except in the case of G2 (7.16), which in turn has the 

lowest variation coefficient (CV) for this property (9%), indicating 

the presence of soil samples mostly alkaline (pH > 7.0). The group 

G1 shows the highest differences for the three properties (associated 

to CV values) specially in the case of OC (94%), therefore, the 
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higher contrast in their optical reflectance values within spectral 

range studied is expected. The groups G4 and G5 can be considered 

as the most homogeneous because the average values are similar to 

the GN for the three cases, and their CV are the lowest. In the case 

of G3, this has acid characteristics (pH< 5.0) and the lowest CECe 

values, furthermore, along with G2 presents the lower exchangeable 

acidity (0.52 and 0.00 cmol Kg-1, respectively)  in comparison with 

 
Table 1. Statistical analysis of the properties for 85 soil samples in general (GN) 
and separated by groups (G), in terms of pH, OC, and CECe. 
 

                     Group (N) 
 Properties 

G1 
(9) 

G2 
(26) 

G3 
(20) 

G4 
(20) 

G5 
(10) 

GN 
(85) 

pH (1:1) 

�̅� 5.35 7.16 4.81 5.49 5.44 5.81 

𝒙𝒎𝒆𝒅 4.84 7.37 4.68 5.67 5.50 5.73 

𝒙𝒎𝒊𝒏 4.43 6.02 4.03 3.93 4.61 3.93 

𝒙𝒎𝒂𝒙 6.97 8.17 6.63 6.58 6.60 8.17 

𝑪𝑽 (%) 18 9% 14 13 13 20 

OC (%) 

�̅� 0.90 1.10 1.13 1.47 1.49 1.22 

𝒙𝒎𝒆𝒅 0.39 0.92 0.88 1.54 1.66 1.26 

𝒙𝒎𝒊𝒏 0.26 0.32 0.39 0.13 0.53 0.13 

𝒙𝒎𝒂𝒙 2.34 2.64 2.63 2.37 2.19 2.64 

𝑪𝑽 (%) 94 50 55 43 36 53 

CECe 
(cmolc 
Kg-1) 

�̅� 15.69 20.41 10.63 18.63 15.36 16.64 

𝒙𝒎𝒆𝒅 7.60 20.00 9.20 20.05 15.70 16.00 

𝒙𝒎𝒊𝒏 3.10 8.3 2.10 4.10 5.70 2.10 

𝒙𝒎𝒂𝒙 34.90 33.40 28.80 26.60 22.80 34.90 

𝑪𝑽 (%) 84 41 70 35 38 53 

 
Table 2. Pearson’s correlation coefficients between the chemical properties 
associated to samples presented in Table 1, separated by group and pH level. 
 

                       Properties 
 Samples 

pH  
(1:1) 

OC  
(%) 

CECe 
(cmolc Kg-1) 

G1 
pH (1:1) 1.000   
OC (%) 0.855 1.000  

CECe (cmol Kg-1) 0.876 0.951 1.000 

G2 
pH (1:1) 1.000   
OC (%) -0.192 1.000  

CECe (cmol Kg-1) 0.340 0.343 1.000 

G3 
pH (1:1) 1.000   
OC (%) -0.206 1.000  

CECe (cmol Kg-1) 0.799 0.239 1.000 

G4 
pH (1:1) 1.000   
OC (%) 0.547 1.000  

CECe (cmol Kg-1) 0.543 0.791 1.000 

G5 
pH (1:1) 1.000   
OC (%) 0.629 1.000  

CECe (cmol Kg-1) 0.714 0.874 1.000 

Acid 
(pH ≤ 

6.0) 

pH (1:1) 1.000   
OC (%) 0.472 1.000  

CECe (cmol Kg-1) 0.713 0.714 1.000 

Neutral 
and 

Alkaline 
(pH > 

6.0) 

pH (1:1) 1.000   
OC (%) -0.230 1.000  

CECe (cmol Kg-1) 0.248 0.352 1.000 

OC: organic carbon content, CECe: effective cation exchange capacity.  

G1, G3 and G4 (3.21, 1.26, 1.10 cmol Kg-1), therefore, the relation 

between their properties is expected to be different. In Table 2 are 

shown the Pearson’s correlation coefficient (𝑟) obtained between 

the pH, OC and CECe for each samples group, and separating them 

by the pH level (mostly acid or alkaline).    

The correlation between pH and OC is positive for groups G1, G4, 

G5 and negative for G2 and G3. This is mediated by presence of 

phenols and carboxylic compounds in organic matter, which 

increases the availability of deionized sites at acidity conditions, and 

in turn the pH. In contrast, for soils of low acidity exchange 

properties (as G2 and G3), these compounds facilitate the release of 

H+ decreasing their pH level (Andersson et al., 2000; Curtin et al., 

1998). This last can be confirmed from relations obtained for the 85 

soils separated by the pH level, where the values of 𝑟 for these three 

properties are significatively major in those samples of acid 

properties. In general, it has been found that the relationship 

between the contents of pH and OC affects the dependence among 

OC with CECe. The above can be understood because there is a 

direct connection of the acidity level, mineral content and exchange 

cations in soil solution. Therefore, it is expected that prediction 

models show better results in soils of acid conditions. 

 

2.2. Experimental setup 
The Figure 1 shows the experimental setup used to generate the 

multispectral images. This is composed by two tungsten lamps 

placed in a diffusor film to homogenize the illumination over the 

surface of interest. The spectral images were recorded by using the 

Fabry-Perot Monoarch EVK Multi-Spectral Camera (Unispectral, 

Israel), which cover the range from 730-920 nm with 10 spectral 

bands of FWHM ± 40 nm. The camera was placed at 50 cm from 

surface (FOV 13.5x13.5 cm2) in normal detection (0° zenith angle), 

in order to improve the quality of images eliminating shadows and 

dark zones; moreover, an exposure time of 100 ms and gain 1.0 to 

avoid the saturation of signal were used. The images were 

individually captured for each band by snapshot mode at high 

resolution (1280x1040), assigning values to optical signal 

(radiance) from 0 to 954 according to their reflectance level 

(manufacturer calibration). The camera settings and the 

previsualization of the images were done through Unispectral 

software, while final analysis of information by using ENVI 5.3. 

 
Figure 1. Scheme of the experimental setup used to generate the multispectral 
images 
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2.3. Image processing 
The Figure 2a shows an image at 920 nm (grayscale) where the 

optical responses obtained for same an agricultural soil, under 

different laboratory treatments, are compared. In the first case (up), 

the sample has been dried at room temperature and sieved to obtain 

particles of diameter lower than 2.0 mm. For the other one (below), 

the sample has been crushed with an agate mortar to obtain smaller 

and more homogeneous particle sizes. Notice that even though both 

samples are chemically identical, the second one looks brighter, 

which could be associated to scattering processes related to the 

particles size, and consequently, the comparison of samples to 

determine spectral similarities is conditioned. 

This is confirmed in the Figure 2b in which the optical signals 

obtained for the compared samples are shown. The curves 

correspond to average values for each spectral band over a region of 

interest that cover 3000 pixels, where the corresponding standard 

deviation has been plot as dash lines. As it is shown, the signal for 

sample only sieved (blue) is lower across the whole range, with a 

higher optical dispersion that generates an error around 11% within 

the measured spectrum. In the case of sieve and crush sample (red), 

this error decreases up 6% due to the pixels considered presents less 

differences as a consequence of homogeneity of surface. Similar 

results have been reported previously, showing that both signals 

provide similar information differentiated only by their level of 

radiance (Guo et al., 2019; Tahmasbian et al., 2018).  

The growing trend of these optical signals are associated to spectral 

emission pattern of tungsten lamps, whereby it is mandatory to 

perform a normalization process of the images to determine the real 

reflectance values. The dependence of the obtained signals 

𝑆(𝜌, 𝜆) can be describe following the Eq. 1 

 

𝑆(𝜌, 𝜆) = 𝐼0(𝜌, 𝜆) 𝑅(𝜌, 𝜆) 𝑓(𝜌, 𝜆), (1) 

 

where 𝐼0(𝜌, 𝜆) is the intensity of light source, which could vary for 

each point (𝜌) over the illuminated surface, 𝑅(𝜌, 𝜆) is the optical 

reflectance of the studied sample, and 𝑓(𝜌, 𝜆) is the transference 

function of the camera, associated to digital transformation of light 

captured. The first and third factor in Eq. 1 are associated to the 

instruments used in the experimental setup, while the second one 

corresponds to the information required for characterization of the 

sample. Therefore, it is necessary selecting an adequate 

normalization signal, similar to processes developed for analysis of 

optical and electrical signals (Ramirez-Rincon et al., 2020; 

Ramírez-Rincón et al., 2018), thus, it is possible separate these 

dependences to determine the property of interest. In this case, it has 

been used a PTFE “Teflon” standard surface (reflectance 99%) that 

covered all FOV of multispectral camera (see Figure 1). 

 

𝑅𝑠(𝜌, 𝜆) =
𝑆𝑠(𝜌, 𝜆)

𝑆𝑟𝑒𝑓(𝜌, 𝜆)
𝑅𝑟𝑒𝑓(𝜌, 𝜆) (2) 

 

The Eq. 2 corresponds to the usual normalization factor used for 

analysis of the multispectral images (Buddenbaum and Steffens, 

2011). This indicates that the reflectance for each pixel in the 10 

bands is determined dividing the optical signals for sample (𝑆𝑠) and 

reference (𝑆𝑟𝑒𝑓), multiplied by a correction factor associated to 

PTFE surface (𝑅𝑟𝑒𝑓).  

The Figure 3 presents the corrected (normalized) image and the 

corresponding reflectance for samples of Figure 2. From here, it is 

possible conclude that soils sieved and sieved + crush can present a 

difference of up to 30 % in their reflectance values and 5 % more 

error. Therefore, in order to generate comparable images in the 85 

soil samples, all these were homogenized by sieved and crushing 

treatment, and their images analyzed following the Eq. 2. 

 

3. Results and discussion  
 

Multispectral images associated to representative samples of the 

minimum (Min), medium (Med) and maximum (Max) values of 

OC, for the soil samples described in Table 1 are shown in Figure 

4a. For each case, approximately 50 g of soil has been deposited in 

individual racks of area 2.5x2.5 cm2, which have been treated and 

analyzed following the methodology described in the previous 

section. 

 

 
Figure 2. Comparison of the optical response (S) for identical samples under 
treatments of sieved (blue) and sieved + crush (red), for an image at 920 nm (a) 
and in the spectral range from 720 to 930 nm (b). The mean soil spectral footprint 
(line) and the corresponding standard deviation (dash line) show higher dispersion 
for the sample only sieved.  

 

 
Figure 3. Comparison of the normalized optical response for identical samples, only 
sieved (blue) and sieved + crush (red), for an image at 920 nm (a) and for the 
reflectance (R) obtained in the range from 720 to 930 nm (b). 
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Figure 4. Normalized images at 805 nm for representative samples of the minimum 
(Min), medium (Med) and maximum (Max) values of organic carbon content (OC), 
according to data presented in Table 1 for each group (G1-G5) (a), and the 
corresponding average reflectance values for the groups G2 (b) and G4 (c).  

 
Table 3. Average Pearson’s correlation coefficients obtained between the 
reflectance values for each group of samples, and the chemical properties of 
interest.  
 

Samples 
pH  

(1:1) 
OC  
(%) 

CECe 
(cmolc Kg-1) 

G1-4-5 -0.748 -0.771 -0.764 
G2-3 -0.382 0.281 0.394 
Acid 

(pH ≤ 6.0) 
-0.707 -0.617 -0.868 

Neutral and Alkaline  
(pH > 6.0) 

-0.532 0.189 -0.048 

OC: organic carbon content, CECe: effective cation exchange capacity.  

 

These images are represented in a digital scale from 0.0 to 1.0, that 

correspond to the optical signal obtained at 805 nm after 

normalization process. It is observed that surfaces are smooth and 

homogeneous in each case, whereby, the changes in bright levels 

can be directly related to reflectance of sample and their 

physicochemical properties. In Figures 4 b-c are shown the 

reflectance values for the samples of groups G2 and G4, which has 

been calculated using an average over 6000 pixels (dash square) for 

each spectral band. These curves summarize the typical behavior of 

dry soil samples, where their concavity and absolute values are 

conditioned by the organic compounds, minerals and iron oxides, 

allowing to generate prediction models in the NIR region 

(Buddenbaum and Steffens, 2011; Haijun et al., 2017; Stoner and 

Baumgardner, 1981). 

According to the spectra shown in Figures 4b-c, the groups G2 and 

G4 present a contrary relation between the reflectance and their 

values of OC, positive in the first case and negative in the other one. 

This agrees with that found in Table 2 for the dependence OC-pH, 

where it has been demonstrated that those samples with acid 

properties show a better correlation between the CECe, pH and OC, 

therefore it is possible to establish models based on optical 

reflectance to predict these chemical properties.  

The same analytical process has been repeated with the 85 soil 

samples, in order to obtain their reflectance spectra and correlate 

them with the properties of interest through the Pearson’s 

coefficient. The results are presented in Table 3 grouping the 

samples according to their chemical similarity and pH level (see 

Table 2). 

As it is expected, those samples, where the OC, pH and CECe values 

are better linked (G1, G4, G5), show the higher correlations with 

reflectance (negative) due to the effect of pH at high acidity levels 

over the soil properties. In the case of G2 and G3, these correlations 

take low and positive values, therefore it is not possible establish 

prediction models in this spectral range for samples of low 

exchangeable acidity. Additionally, it is observed a noticeable fall 

in the correlation of 𝑅(𝜌, 𝜆) with OC for the samples of acid 

properties (pH < 6.0), due to each group of samples present different 

coloring patterns (see Figure 1) directly related with OC values, 

limiting the successful comparison of different types of soils. 

In order to obtain images that visually represent the differences 

between the samples, and thus, for generating fast and reliable 

comparison alternatives to be used both in laboratory and field 

applications, it is possible to use a digital gray scale from 0 (black) 

to 256 (white), where the optical signal of any sample is scaled 

according to its reflectance values. The Figure 5a shows in gray 

levels (GL), the multispectral images for the samples presented in 

Figure 4a.  

The changes in the reflectance values for a group of samples, and 

hence of their chemical properties when they are analyzed at the 

same experimental conditions, result more evident in this case since 

they are represented in a wider scale. 

 

 
Figure 5. Grayscale images for the samples described in Figure 4 (a). Scatter plots 
for the organic carbon content (OC) (b) and effective cation exchange capacity 
(CECe) (c), with the gray levels of the images for the samples of G1 and G4, 
respectively. 
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Notice that there is a huge difference in brightness of the images for 

the samples Max and Min in G1, which is related to variation 

coefficient obtained (94 %) for the values of OC. Additionally, it 

can be verified that for the samples of groups G2 and G3, the 

reflectance decreases as the OC increases, contrary to observed for 

the other cases.  As an example, the Figures 5 b-c show the scatter 

diagrams that correlate the GL with the OC and CECe values for 

groups G1 and G4, respectively. In both cases there is a good linear 

tendency between the target parameters, therefore, this type of 

images could be used to establish prediction and comparison criteria 

in the characterization of agricultural soil samples. This 

methodology has been proved in those samples of mostly acid 

properties (pH < 6.0), by comparison of its relative gray levels 

(GLR), with the values of OC (OCR) and CECe (CECeR), taking as 

reference the representative samples for the minimum values of OC.  

The results displayed in Figure 6 demonstrate that it is possible 

categorize agriculture soil samples by using simple optical 

comparisons, as well to predict the values of OC (a) and CECe (b) 

within an acceptable analytical tolerance range for soils.  In both 

cases, changes around 20 % in GLN indicates differences in values 

of each property up to 50 %, following an almost linear tendency. 

The lower values of GLR (< 0.2 not displayed) were obtained for 

those samples that present differences in their properties around 8 

times compared to the reference. These ones correspond to soils of 

group G1, such as has been shown before. The reliability of gray 

levels for prediction of these properties has been quantified in terms 

of the ratio of performance to deviation (RPD), using the linear 

tendency (red) obtained for each case. The values of RPD between 

2.0 and 2.5 indicates that prediction model used result adequate for 

estimation of interest properties (Chang et al., 2001; Nawar et al., 

2014; Zhang et al., 2013). These results demonstrate the usefulness 

of optical techniques and specifically of multispectral spectroscopy, 

for characterization of multicomponent samples through the 

analysis of the generated images.

 

 
Figure 6. Scatter plots of the relative gray level (GLR) obtained for the acid samples (pH < 6.0) and the relative values of organic carbon content (OC) (a) and effective 
cation exchange capacity (b). 

 

4. Conclusions 
 

In this study 85 agricultural soil samples have been characterized 

using the optical reflectance values, which has been obtained from 

multispectral images captured in 10 spectral bands within range 

from 730 to 920 nm.  The signal processing (normalization) 

demonstrated a reduction of 30 % in reflectance values as a 

consequence of soil particle size, therefore all samples were sieved 

and crushed to avoid sub estimation of their optical properties. 

These images have been used to relate the reflectance for each soil 

group with their values of pH, OC and CECe, obtaining the best 

results with those samples of low exchange acidity. Additionally, 

the multispectral images were rescaled in terms of gray levels (0 - 

256) to be compared between them, allowing the generation of 

prediction models adequate (RPD > 2.0) for estimation of OC and 

CECe in samples of acid properties (pH < 6.0). These simple optical 

analysis processes show the useful of multi/hyperspectral 

spectroscopy for the rapid, low cost and accurate characterization of 

multicomponent samples.  
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